Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(10): e2105704, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34985808

RESUMO

In vivo cells reside in a complex extracellular matrix (ECM) that presents spatially distributed biochemical and -physical cues at the nano- to micrometer scales. Chemical micropatterning is successfully used to generate adhesive islands to control where and how cells attach and restore cues of the ECM in vitro. Although chemical micropatterning has become a powerful tool to study cell-material interactions, only a fraction of the possible micropattern designs was covered so far, leaving many other possible designs still unexplored. Here, a high-throughput screening platform called "Galapagos chip" is developed. It contains a library of 2176 distinct subcellular chemical patterns created using mathematical algorithms and a straightforward UV-induced two-step surface modification. This approach enables the immobilization of ligands in geometrically defined regions onto cell culture substrates. To validate the system, binary RGD/polyethylene glycol patterns are prepared on which human mesenchymal stem cells are cultured, and the authors observe how different patterns affect cell and organelle morphology. As proof of concept, the cells are stained for the mechanosensitive YAP protein, and, using a machine-learning algorithm, it is demonstrated that cell shape and YAP nuclear translocation correlate. It is concluded that the Galapagos chip is a versatile platform to screen geometrical aspects of cell-ECM interaction.


Assuntos
Adesivos , Ensaios de Triagem em Larga Escala , Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Humanos , Polietilenoglicóis
2.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28783255

RESUMO

To regenerate soft aligned tissues in living organisms, low invasive biomaterials are required to create 3D microenvironments with a structural complexity to mimic the tissue's native architecture. Here, a tunable injectable hydrogel is reported, which allows precise engineering of the construct's anisotropy in situ. This material is defined as an Anisogel, representing a new type of tissue regenerative therapy. The Anisogel comprises a soft hydrogel, surrounding magneto-responsive, cell adhesive, short fibers, which orient in situ in the direction of a low external magnetic field, before complete gelation of the matrix. The magnetic field can be removed after gelation of the biocompatible gel precursor, which fixes the aligned fibers and preserves the anisotropic structure of the Anisogel. Fibroblasts and nerve cells grow and extend unidirectionally within the Anisogels, in comparison to hydrogels without fibers or with randomly oriented fibers. The neurons inside the Anisogel show spontaneous electrical activity with calcium signals propagating along the anisotropy axis of the material. The reported system is simple and elegant and the short magneto-responsive fibers can be produced with an effective high-throughput method, ideal for a minimal invasive route for aligned tissue therapy.


Assuntos
Hidrogéis/farmacologia , Injeções , Neurônios/citologia , Animais , Anisotropia , Proliferação de Células/efeitos dos fármacos , Embrião de Galinha , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Neurônios/efeitos dos fármacos
3.
Front Cell Dev Biol ; 10: 863721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35721512

RESUMO

Cells probe their environment and adapt their shape accordingly via the organization of focal adhesions and the actin cytoskeleton. In an earlier publication, we described the relationship between cell shape and physiology, for example, shape-induced differentiation, metabolism, and proliferation in mesenchymal stem cells and tenocytes. In this study, we investigated how these cells organize their adhesive machinery over time when exposed to microfabricated surfaces of different topographies and adhesive island geometries. We further examined the reciprocal interaction between stress fiber and focal adhesion formation by pharmacological perturbations. Our results confirm the current literature that spatial organization of adhesive sites determines the ability to form focal adhesions and stress fibers. Therefore, cells on roughened surfaces have smaller focal adhesion and fewer stress fibers. Our results further highlight the importance of integrin-mediated adhesion in the adaptive properties of cells and provide clear links to the development of bioactive materials.

4.
Tissue Eng Part A ; 27(15-16): 1023-1036, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33045937

RESUMO

The tenocyte niche contains biochemical and biophysical signals that are needed for tendon homeostasis. The tenocyte phenotype is correlated with cell shape in vivo and in vitro, and shape-modifying cues are needed for tenocyte phenotypical maintenance. Indeed, cell shape changes from elongated to spread when cultured on a flat surface, and rat tenocytes lose the expression of phenotypical markers throughout five passages. We hypothesized that tendon gene expression can be preserved by culturing cells in the native tendon shape. To this end, we reproduced the tendon topographical landscape into tissue culture polystyrene, using imprinting technology. We confirmed that the imprints forced the cells into a more elongated shape, which correlated with the level of Scleraxis expression. When we cultured the tenocytes for 7 days on flat surfaces and tendon imprints, we observed a decline in tenogenic marker expression on flat but not on imprints. This research demonstrates that native tendon topography is an important factor contributing to the tenocyte phenotype. Tendon imprints therefore provide a powerful platform to explore the effect of instructive cues originating from native tendon topography on guiding cell shape, phenotype, and function of tendon-related cells.


Assuntos
Biomimética , Tenócitos , Animais , Células Cultivadas , Fenótipo , Ratos , Tendões , Engenharia Tecidual
5.
ACS Appl Mater Interfaces ; 6(12): 9680-8, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24823960

RESUMO

This paper investigates the stability of the Cassie state of wetting in transparent superhydrophobic coatings by comparing a single-layer microporous coating with a double-layer micro/nanoporous coating. Increasing pressure resistance of superhydrophobic coatings is of interest for practical use because high external pressures may be exerted on surfaces during operation. The Cassie state stability against the external pressure of coatings was investigated by squeezing droplets sitting on surfaces with a hydrophobic plate. Droplets on the single-layer coating transformed to the Wenzel state and pinned to the surface after squeezing, whereas droplets on the double-layer micro/nanoporous coating preserved the Cassie state and rolled off the surface easily. In addition, the contact angle and contact-line diameter of water droplets during evaporation from surfaces were in situ investigated to further understand the stability of coatings against Wenzel transition. A droplet on a microporous coating gradually transformed to the Wenzel state and lost its spherical shape as the droplet volume decreased (i.e., the internal pressure of the droplet increased). The contact line of the droplet during evaporation remained almost unchanged. In contrast, a water droplet on a double-layer surface preserved its spherical shape even at the last stages of the evaporation process, where pressure differences as high as a few thousand pascals were generated. For this case, the droplet contact line retracted during evaporation and the droplet recovered the initial water contact angle. The demonstrated method for the preparation of robust transparent superhydrophobic coatings is promising for outdoor applications such as self-cleaning cover glasses for solar cells and nonwetting windows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA