Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Radiat Environ Biophys ; 49(4): 549-65, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20931337

RESUMO

Environmental monitoring programs often measure contaminant concentrations in animal tissues consumed by humans (e.g., muscle). By comparison, demonstration of the protection of biota from the potential effects of radionuclides involves a comparison of whole-body doses to radiological dose benchmarks. Consequently, methods for deriving whole-body concentration ratios based on tissue-specific data are required to make best use of the available information. This paper provides a series of look-up tables with whole-body:tissue-specific concentration ratios for non-human biota. Focus was placed on relatively broad animal categories (including molluscs, crustaceans, freshwater fishes, marine fishes, amphibians, reptiles, birds and mammals) and commonly measured tissues (specifically, bone, muscle, liver and kidney). Depending upon organism, whole-body to tissue concentration ratios were derived for between 12 and 47 elements. The whole-body to tissue concentration ratios can be used to estimate whole-body concentrations from tissue-specific measurements. However, we recommend that any given whole-body to tissue concentration ratio should not be used if the value falls between 0.75 and 1.5. Instead, a value of one should be assumed.


Assuntos
Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Contaminação Radioativa de Alimentos , Monitoramento de Radiação/métodos , Animais , Poluentes Ambientais/análise , Cadeia Alimentar , Humanos , Modelos Estatísticos , Radioisótopos/efeitos adversos , Distribuição Tecidual
2.
J Environ Radioact ; 99(1): 167-80, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17884259

RESUMO

Few data are available on the comparative accumulation of metal(loid)s from water and food in estuarine/marine fish. Smooth toadfish (Tetractenos glaber), commonly found in estuaries in south-eastern Australia, were separately exposed to radio-labelled seawater (14kBqL(-1) of (109)Cd and 24kBqL(-1) of (75)Se) and food (ghost shrimps; Trypaea australiensis: 875Bqg(-1)(109)Cd and 1130Bqg(-1)(75)Se) for 25 days (uptake phase), followed by exposure to radionuclide-free water or food for 30 days (loss phase). Toadfish accumulated (109)Cd predominantly from water (85%) and (75)Se predominantly from food (62%), although the latter was lower than expected. For both the water and food exposures, (109)Cd was predominantly located in the gut lining (60-75%) at the end of the uptake phase, suggesting that the gut may be the primary pathway of (109)Cd uptake. This may be attributed to toadfish drinking large volumes of water to maintain osmoregulation. By the end of the loss phase, (109)Cd had predominantly shifted to the excretory organs - the liver (81%) in toadfish exposed to radio-labelled food, and in the liver, gills and kidney (82%) of toadfish exposed to radio-labelled water. In contrast, (75)Se was predominantly located in the excretory organs (gills, kidneys and liver; 66-76%) at the end of the uptake phase, irrespective of the exposure pathway, with minimal change in percentage distribution (76-83%) after the loss phase. This study emphasises the importance of differentiating accumulation pathways to better understand metal(loid) transfer dynamics and subsequent toxicity, in aquatic biota.


Assuntos
Radioisótopos de Cádmio/farmacocinética , Peixes/metabolismo , Alimentos , Radioisótopos de Selênio/farmacocinética , Poluentes Radioativos da Água/farmacocinética , Animais , Radioisótopos de Cádmio/análise , Radioisótopos de Selênio/análise , Distribuição Tecidual , Poluentes Radioativos da Água/análise
3.
Chemosphere ; 67(6): 1202-10, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17182081

RESUMO

Semaphore crabs (Heloecius cordiformis), soldier crabs (Mictyris platycheles), ghost shrimps (Trypaea australiensis), pygmy mussels (Xenostrobus securis), and polychaetes (Eunice sp.), key benthic prey items of predatory fish commonly found in estuaries throughout southeastern Australia, were exposed to dissolved (109)Cd and (75)Se for 385 h at 30 k Bq/l (uptake phase), followed by exposure to radionuclide-free water for 189 h (loss phase). The whole body uptake rates of (75)Se by pygmy mussels, semaphore crabs and soldier crabs were 1.9, 2.4 and 4.1 times higher than (109)Cd, respectively. There were no significant (P>0.05) differences between the uptake rates of (75)Se and (109)Cd for ghost shrimps and polychaetes. The uptake rates of (109)Cd and (75)Se were highest in pygmy mussels; about six times higher than in soldier crabs for (109)Cd and in polychaetes for (75)Se - the organisms with the lowest uptake rates. The loss rates of (109)Cd and (75)Se were highest in semaphore crabs; about four times higher than in polychaetes for (109)Cd and nine times higher than in ghost shrimps for (75)Se - the organisms with the lowest loss rates. The loss of (109)Cd and (75)Se in all organisms was best described by a two (i.e. short and a longer-lived) compartment model. In the short-lived, or rapidly exchanging, compartment, the biological half-lives of (75)Se (16-39 h) were about three times greater than those of (109)Cd (5-12h). In contrast, the biological half-lives of (109)Cd in the longer-lived, or slowly exchanging compartment(s), were typically greater (1370-5950 h) than those of (75)Se (161-1500 h). Semaphore crabs had the shortest biological half-lives of both radionuclides in the long-lived compartment, whereas polychaetes had the greatest biological half-life for (109)Cd (5950 h), and ghost shrimps had the greatest biological half-life for (75)Se (1500 h). This study provides the first reported data for the biological half-lives of Se in estuarine decapod crustaceans. Moreover, it emphasises the importance of determining metal(loid) accumulation and loss kinetics in keystone prey items, which consequently influences their trophic transfer potential to higher-order predators.


Assuntos
Radioisótopos de Cádmio/metabolismo , Radioisótopos de Selênio/metabolismo , Animais , Bivalves , Braquiúros , Radioisótopos de Cádmio/farmacocinética , Decápodes , Meia-Vida , Poliquetos , Água do Mar , Radioisótopos de Selênio/farmacocinética , Solubilidade
4.
J Environ Radioact ; 76(1-2): 253-64, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15245852

RESUMO

The uptake of radionuclides by commercial crops is being studied at two sites, Blain and Tippera, in a research farm in the Northern Territory, Australia. Studies have been performed to characterise the properties of the two soils, particularly the hydraulic properties that are considered to significantly influence the transport and plant uptake of these radionuclides in the soils The Blain soil, a sandy loam, has been categorised as SM according to the Unified Soil Classification System. Quartz is the dominant mineral for the Blain soil. The Tippera soil, a kaolinitic clayey loam has been categorised as CL. Chemical analysis results were consistent with these findings. The saturated hydraulic conductivity values were of the order of 10(-4) cm/s for the Blain soil. These values were greater by 3-4 orders of magnitude than those for the Tippera soils. The results obtained from the hydraulic property measurements were used to estimate the unsaturated hydraulic properties. A bimodal description based on van Genuchten-type partial saturation functions was used for the estimation. The estimation was qualitatively consistent with the soil types.


Assuntos
Modelos Teóricos , Raízes de Plantas/química , Radioisótopos/análise , Radioisótopos/farmacocinética , Poluentes Radioativos do Solo/análise , Northern Territory , Solo , Solubilidade , Clima Tropical , Movimentos da Água
5.
PLoS One ; 9(3): e91371, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24663964

RESUMO

Bony bream (Nematalosa erebi) and black catfish (Neosilurus ater) were sampled from the fresh surface waters of the Finniss River in tropical northern Australia, along a metal pollution gradient draining the Rum Jungle copper/uranium mine, a contaminant source for over five decades. Paradoxically, populations of both fish species exposed to the highest concentrations of mine-related metals (cobalt, copper, lead, manganese, nickel, uranium and zinc) in surface water and sediment had the lowest tissue (bone, liver and muscle) concentrations of these metals. The degree of reduction in tissue concentrations of exposed populations was also specific to each metal and inversely related to its degree of environmental increase above background. Several explanations for diminished metal bioaccumulation in fishes from the contaminated region were evaluated. Geochemical speciation modeling of metal bioavailability in surface water showed no differences between the contaminated region and the control sites. Also, the macro-nutrient (calcium, magnesium and sodium) water concentrations, that may competitively inhibit metal uptake, were not elevated with trace metal contamination. Reduced exposure to contaminants due to avoidance behavior was unlikely due to the absence of refugial water bodies with the requisite metal concentrations lower than the control sites and very reduced connectivity at time of sampling. The most plausible interpretation of these results is that populations of both fish species have modified kinetics within their metal bioaccumulation physiology, via adaptation or tolerance responses, to reduce their body burdens of metals. This hypothesis is consistent with (i) reduced tissue concentrations of calcium, magnesium and sodium (macro-nutrients), in exposed populations of both species, (ii) experimental findings for other fish species from the Finniss River and other contaminated regions, and (iii) the number of generations exposed to likely selection pressure over 50 years.


Assuntos
Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Peixes/metabolismo , Água Doce/química , Metais Pesados/metabolismo , Mineração , Poluentes Químicos da Água/metabolismo , Animais , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Resíduos Industriais , Metais Pesados/análise , Fatores de Tempo , Água/análise , Água/química , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA