Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
2.
Plant J ; 113(1): 26-46, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377929

RESUMO

The advent of the pangenome era has unraveled previously unknown genetic variation existing within diverse crop plants, including rice. This untapped genetic variation is believed to account for a major portion of phenotypic variation existing in crop plants. However, the use of conventional single reference-guided genotyping often fails to capture a large portion of this genetic variation leading to a reference bias. This makes it difficult to identify and utilize novel population/cultivar-specific genes for crop improvement. Thus, we developed a Rice Pangenome Genotyping Array (RPGA) harboring probes assaying 80K single-nucleotide polymorphisms (SNPs) and presence-absence variants spanning the entire 3K rice pangenome. This array provides a simple, user-friendly and cost-effective (60-80 USD per sample) solution for rapid pangenome-based genotyping in rice. The genome-wide association study (GWAS) conducted using RPGA-SNP genotyping data of a rice diversity panel detected a total of 42 loci, including previously known as well as novel genomic loci regulating grain size/weight traits in rice. Eight of these identified trait-associated loci (dispensable loci) could not be detected with conventional single reference genome-based GWAS. A WD repeat-containing PROTEIN 12 gene underlying one of such dispensable locus on chromosome 7 (qLWR7) along with other non-dispensable loci were subsequently detected using high-resolution quantitative trait loci mapping confirming authenticity of RPGA-led GWAS. This demonstrates the potential of RPGA-based genotyping to overcome reference bias. The application of RPGA-based genotyping for population structure analysis, hybridity testing, ultra-high-density genetic map construction and chromosome-level genome assembly, and marker-assisted selection was also demonstrated. A web application (http://www.rpgaweb.com) was further developed to provide an easy to use platform for the imputation of RPGA-based genotyping data using 3K rice reference panel and subsequent GWAS.


Assuntos
Estudo de Associação Genômica Ampla , Oryza , Mapeamento Cromossômico , Oryza/genética , Genótipo , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética
3.
Plant Physiol ; 191(3): 1884-1912, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36477336

RESUMO

Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.


Assuntos
Cicer , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Alelos , Cicer/genética , Cicer/metabolismo , Ácido Abscísico/metabolismo , Resistência à Seca , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética
4.
BMC Biol ; 21(1): 91, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37076907

RESUMO

BACKGROUND: Rice grain size (GS) is an essential agronomic trait. Though several genes and miRNA modules influencing GS are known and seed development transcriptomes analyzed, a comprehensive compendium connecting all possible players is lacking. This study utilizes two contrasting GS indica rice genotypes (small-grained SN and large-grained LGR). Rice seed development involves five stages (S1-S5). Comparative transcriptome and miRNome atlases, substantiated with morphological and cytological studies, from S1-S5 stages and flag leaf have been analyzed to identify GS proponents. RESULTS: Histology shows prolonged endosperm development and cell enlargement in LGR. Stand-alone and comparative RNAseq analyses manifest S3 (5-10 days after pollination) stage as crucial for GS enhancement, coherently with cell cycle, endoreduplication, and programmed cell death participating genes. Seed storage protein and carbohydrate accumulation, cytologically and by RNAseq, is shown to be delayed in LGR. Fourteen transcription factor families influence GS. Pathway genes for four phytohormones display opposite patterns of higher expression. A total of 186 genes generated from the transcriptome analyses are located within GS trait-related QTLs deciphered by a cross between SN and LGR. Fourteen miRNA families express specifically in SN or LGR seeds. Eight miRNA-target modules display contrasting expressions amongst SN and LGR, while 26 (SN) and 43 (LGR) modules are differentially expressed in all stages. CONCLUSIONS: Integration of all analyses concludes in a "Domino effect" model for GS regulation highlighting chronology and fruition of each event. This study delineates the essence of GS regulation, providing scope for future exploits. The rice grain development database (RGDD) ( www.nipgr.ac.in/RGDD/index.php ; https://doi.org/10.5281/zenodo.7762870 ) has been developed for easy access of data generated in this paper.


Assuntos
MicroRNAs , Oryza , Transcriptoma , Sementes/genética , Perfilação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Plant J ; 101(6): 1411-1429, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31702850

RESUMO

Mediator, a multisubunit co-activator complex, regulates transcription in eukaryotes and is involved in diverse processes in Arabidopsis through its different subunits. Here, we have explored developmental aspects of one of the rice Mediator subunit gene OsMED14_1. We analyzed its expression pattern through RNA in situ hybridization and pOsMED14_1:GUS transgenics that showed its expression in roots, leaves, anthers and seeds prominently at younger stages, indicating possible involvement of this subunit in multiple aspects of rice development. To understand the developmental roles of OsMED14_1 in rice, we generated and studied RNAi-based knockdown rice plants that showed multiple effects including less height, narrower leaves and culms with reduced vasculature, lesser lateral root branching, defective microspore development, reduced panicle branching and seed set, and smaller seeds. Histological analyses showed that slender organs were caused by reduction in both cell number and cell size in OsMED14_1 knockdown plants. Flow cytometric analyses and expression analyses of cell cycle-related genes revealed that defective cell-cycle progression led to these defects. Expression analyses of auxin-related genes and indole-3-acetic acid (IAA) immunolocalization study indicated altered auxin level in these knockdown plants. Reduction of lateral root branching in knockdown plants was corrected by exogenous IAA supplement. OsMED14_1 physically interacts with transcription factors YABBY5, TAPETUM DEGENERATION RETARDATION (TDR) and MADS29, possibly regulating auxin homeostasis and ultimately leading to lateral organ/leaf, microspore and seed development.


Assuntos
Oryza/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Proliferação de Células , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Hibridização In Situ , Oryza/genética , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Plant J ; 103(4): 1525-1547, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32432802

RESUMO

Rice grain size and weight are major determinants of grain quality and yield and so have been under rigorous selection since domestication. However, the genetic basis for contrasting grain size/weight trait among Indian germplasms and their association with domestication-driven evolution is not well understood. In this study, two long (LGG) and two short grain (SGG) genotypes were resequenced. LGG (LGR and PB 1121) differentiated from SGG (Sonasal and Bindli) by 504 439 single nucleotide polymorphisms (SNPs) and 78 166 insertion-and-deletion polymorphisms. The LRK gene cluster was different and a truncation mutation in the LRK8 kinase domain was associated with LGG. Phylogeny with 3000 diverse rice accessions revealed that the four sequenced genotypes belonged to the japonica group and were at the edge of the clades indicating them to be the potential source of genetic diversity available in Indian rice germplasm. Six SNPs were significantly associated with grain size/weight and the top four of these could be validated in mapping a population, suggesting this study as a valuable resource for high-throughput genotyping. A contiguous long low-diversity region (LDR) of approximately 6 Mb carrying a major grain weight quantitative trait loci (harbouring OsTOR gene) was identified on Chromosome 5. This LDR was identified as an evolutionary important site with significant positive selection and multiple selection sweeps, and showed association with many domestication-related traits, including grain size/weight. The aus population retained more allelic variations in the LDR than the japonica and indica populations, suggesting it to be one of the divergence loci. All the data and analyses can be accessed from the RiceSzWtBase database.


Assuntos
Grão Comestível/genética , Oryza/genética , Polimorfismo Genético/genética , Locos de Características Quantitativas/genética , Domesticação , Grão Comestível/anatomia & histologia , Variação Genética/genética , Estudo de Associação Genômica Ampla , Mutação INDEL/genética , Oryza/anatomia & histologia , Filogenia , Polimorfismo Genético/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável
7.
Planta ; 254(1): 8, 2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34143292

RESUMO

MAIN CONCLUSION: OsJAZ11 regulates phosphate homeostasis by suppressing jasmonic acid signaling and biosynthesis in rice roots. Jasmonic Acid (JA) is a key plant signaling molecule which negatively regulates growth processes including root elongation. JAZ (JASMONATE ZIM-DOMAIN) proteins function as transcriptional repressors of JA signaling. Therefore, targeting JA signaling by deploying JAZ repressors may enhance root length in crops. In this study, we overexpressed JAZ repressor OsJAZ11 in rice to alleviate the root growth inhibitory action of JA. OsJAZ11 is a low phosphate (Pi) responsive gene which is transcriptionally regulated by OsPHR2. We report that OsJAZ11 overexpression promoted primary and seminal root elongation which enhanced Pi foraging. Expression studies revealed that overexpression of OsJAZ11 also reduced Pi starvation response (PSR) under Pi limiting conditions. Moreover, OsJAZ11 overexpression also suppressed JA signaling and biosynthesis as compared to wild type (WT). We further demonstrated that the C-terminal region of OsJAZ11 was crucial for stimulating root elongation in overexpression lines. Rice transgenics overexpressing truncated OsJAZ11ΔC transgene (i.e., missing C-terminal region) exhibited reduced root length and Pi uptake. Interestingly, OsJAZ11 also regulates Pi homeostasis via physical interaction with a key Pi sensing protein, OsSPX1. Our study highlights the functional connections between JA and Pi signaling and reveals JAZ repressors as a promising candidate for improving low Pi tolerance of elite rice genotypes.


Assuntos
Oryza , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Oxilipinas , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo
8.
Curr Genomics ; 22(1): 16-25, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34045921

RESUMO

Rice occupies a pre-eminent position as a food crop in the world. Its production, how- ever, entails up to 3000 liters of water per kilogram of grain produced. Such high demand makes rice prone to drought easily. Sustainable rice cultivation with limited water resources requires the deployment of a suitable strategy for better water use efficiency and improved drought tolerance. Several drought-related genes have been evaluated in rice for their mode of action in conferring drought tolerance. Manipulation of components of abscisic acid signal transduction, stomatal density, deposition of cuticular wax, and protein modification pathways are emerging as priority targets. Gene reprogramming by microRNAs is also being explored to achieve drought tolerance. Genetically dissected Quantitative Trait Loci (QTLs) and their constituent genes are being deployed to develop drought-tolerant rice varieties. Progressive research and challenges include a better understanding of crucial components of drought response and search for new targets and the deployment of improved varieties in the field.

9.
Plant J ; 98(5): 864-883, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30758092

RESUMO

Plant height (PH) and plant width (PW), two of the major plant architectural traits determining the yield and productivity of a crop, are defined by diverse morphometric characteristics of the shoot apical meristem (SAM). The identification of potential molecular tags from a single gene that simultaneously modulates these plant/SAM architectural traits is therefore prerequisite to achieve enhanced yield and productivity in crop plants, including chickpea. Large-scale multienvironment phenotyping of the association panel and mapping population have ascertained the efficacy of three vital SAM morphometric trait parameters, SAM width, SAM height and SAM area, as key indicators to unravel the genetic basis of the wide PW and PH trait variations observed in desi chickpea. This study integrated a genome-wide association study (GWAS); quantitative trait locus (QTL)/fine-mapping and map-based cloning with molecular haplotyping; transcript profiling; and protein-DNA interaction assays for the dissection of plant architectural traits in chickpea. These exertions delineated natural alleles and superior haplotypes from a CabHLH121 transcription factor (TF) gene within the major QTL governing PW, PH and SAM morphometric traits. A genome-wide protein-DNA interaction assay assured the direct binding of a known stem cell master regulator, CaWUS, to the WOX-homeodomain TF binding sites of a CabHLH121 gene and its constituted haplotypes. The differential expression of CaWUS and transcriptional regulation of its target CabHLH121 gene/haplotypes were apparent, suggesting their collective role in altering SAM morphometric characteristics and plant architectural traits in the contrasting near isogenic lines (NILs). The NILs introgressed with a superior haplotype of a CabHLH121 exhibited optimal PW and desirable PH as well as enhanced yield and productivity without compromising any component of agronomic performance. These molecular signatures of the CabHLH121 TF gene have the potential to regulate both PW and PH traits through the modulation of proliferation, differentiation and maintenance of the meristematic stem cell population in the SAM; therefore, these signatures will be useful in the translational genomic study of chickpea genetic enhancement. The restructured cultivars with desirable PH (semidwarf) and PW will ensure maximal planting density in a specified cultivable field area, thereby enhancing the overall yield and productivity of chickpea. This can essentially facilitate the achievement of better remunerative outputs by farmers with rational land use, therefore ensuring global food security in the present scenario of an increasing population density and shrinking per capita land area.


Assuntos
Biomassa , Cicer/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Meristema/genética , Brotos de Planta/genética , Alelos , Mapeamento Cromossômico , Cicer/anatomia & histologia , Cicer/metabolismo , Genes de Plantas/genética , Genoma de Planta/genética , Genômica/métodos , Genótipo , Haplótipos , Meristema/anatomia & histologia , Meristema/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética
10.
Plant Physiol ; 180(1): 253-275, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30737266

RESUMO

The identification of functionally relevant molecular tags is vital for genomics-assisted crop improvement and enhancement of seed yield, quality, and productivity in chickpea (Cicer arietinum). The simultaneous improvement of yield/productivity as well as quality traits often requires pyramiding of multiple genes, which remains a major hurdle given various associated epistatic and pleotropic effects. Unfortunately, no single gene that can improve yield/productivity along with quality and other desirable agromorphological traits is known, hampering the genetic enhancement of chickpea. Using a combinatorial genomics-assisted breeding and functional genomics strategy, this study identified natural alleles and haplotypes of an ABCC3-type transporter gene that regulates seed weight, an important domestication trait, by transcriptional regulation and modulation of the transport of glutathione conjugates in seeds of desi and kabuli chickpea. The superior allele/haplotype of this gene introgressed in desi and kabuli near-isogenic lines enhances the seed weight, yield, productivity, and multiple desirable plant architecture and seed-quality traits without compromising agronomic performance. These salient findings can expedite crop improvement endeavors and the development of nutritionally enriched high-yielding cultivars in chickpea.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cicer/genética , Glutationa/metabolismo , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Transportadores de Cassetes de Ligação de ATP/metabolismo , Transporte Biológico , Mapeamento Cromossômico , Cicer/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Haplótipos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Sementes/genética
11.
Physiol Mol Biol Plants ; 26(6): 1087-1098, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32549674

RESUMO

We present here a tribute to Satish Chandra Maheshwari (known to many as SCM, or simply Satish), one of the greatest plant biologists of our time. He was born on October 4, 1933, in Agra, Uttar Pradesh, India, and passed away in Jaipur, Rajasthan, India, on June 12, 2019. He is survived by two of his younger sisters (Sushila Narsimhan and Saubhagya Agrawal), a large number of friends and students from around the world. He has not only been the discoverer of pollen haploids in plants but has also contributed immensely to the field of duckweed research and gene regulation. In addition, he has made discoveries in the area of phytochrome research. The scientific community will always remember him as an extremely dedicated teacher and a passionate researcher; and for his wonderful contributions in the field of Plant Biology. See Sopory and Maheshwari (2001) for a perspective on the beginnings of Plant Molecular Biology in India; and see Raghuram (2002a, b) for the growth and contributions of this field in India.

13.
Funct Integr Genomics ; 19(6): 973-992, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31177403

RESUMO

Developing functional molecular tags from the cis-regulatory sequence components of genes is vital for their deployment in efficient genetic dissection of complex quantitative traits in crop plants including chickpea. The current study identified 431,194 conserved non-coding SNP (CNSNP) from the cis-regulatory element regions of genes which were annotated on a chickpea genome. These genome-wide CNSNP marker resources are made publicly accessible through a user-friendly web-database ( http://www.cnsnpcicarbase.com ). The CNSNP-based quantitative trait loci (QTL) and expression QTL (eQTL) mapping and genome-wide association study (GWAS) were further integrated with global gene expression landscapes, molecular haplotyping, and DNA-protein interaction study in the association panel and recombinant inbred lines (RIL) mapping population to decode complex genetic architecture of one of the vital seed yield trait under drought stress, drought yield index (DYI), in chickpea. This delineated two constituted natural haplotypes and alleles from a histone H3 protein-coding gene and its transcriptional regulator NAC transcription factor (TF) harboring the major QTLs and trans-acting eQTL governing DYI in chickpea. The effect of CNSNPs in TF-binding cis-element of a histone H3 gene in altering the binding affinity and transcriptional activity of NAC TF based on chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay was evident. The CNSNP-led promising molecular tags scanned will essentially have functional significance to decode transcriptional gene regulatory function and thus can drive translational genomic analysis in chickpea.


Assuntos
Cicer/genética , Produtos Agrícolas/genética , Locos de Características Quantitativas , Sequências Reguladoras de Ácido Nucleico , Estresse Fisiológico , Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Secas , Histonas/genética , Histonas/metabolismo , Melhoramento Vegetal/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Característica Quantitativa Herdável , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
14.
Plant Cell Environ ; 42(1): 158-173, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676051

RESUMO

Understanding the genetic basis of photosynthetic efficiency (PE) contributing to enhanced seed yield per plant (SYP) is vital for genomics-assisted crop improvement of chickpea. The current study employed an integrated genomic strategy involving photosynthesis pathway gene-based association mapping, genome-wide association study, quantitative trait loci (QTL) mapping, and expression profiling. This identified 16 potential single nucleotide polymorphism loci linked to major QTLs underlying 16 candidate genes significantly associated with PE and SYP traits in chickpea. The allelic variants were tightly linked to positively interacting QTLs regulating both enhanced PE and SYP traits as exemplified by a chlorophyll A-B binding protein-coding gene. The leaf tissue-specific pronounced up-regulated expression of 16 associated genes in germplasm accessions and homozygous individuals of mapping population was evident. Such combinatorial genomic strategy coupled with gene haplotype-specific association and in silico protein-protein interaction study delineated natural alleles and superior haplotypes from a chlorophyll A-B binding (CAB) protein-coding gene and its interacting gene, Timing of CAB Expression 1 (TOC1), which appear to be most promising candidates in modulating chickpea PE and SYP traits. These functionally pertinent molecular signatures identified have efficacy to drive marker-assisted selection for developing PE-enriched cultivars with high seed yield in chickpea.


Assuntos
Cicer/genética , Fotossíntese/genética , Característica Quantitativa Herdável , Sementes/genética , Mapeamento Cromossômico , Cicer/crescimento & desenvolvimento , Cicer/fisiologia , Produção Agrícola/métodos , Perfilação da Expressão Gênica , Genes de Plantas/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/crescimento & desenvolvimento
15.
Theor Appl Genet ; 132(7): 2017-2038, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30929032

RESUMO

KEY MESSAGE: A combinatorial genomic strategy delineated functionally relevant natural allele of a CLAVATA gene and its marker (haplotype)-assisted introgression led to development of the early-flowering chickpea cultivars with high flower number and enhanced yield/productivity. Unraveling the genetic components involved in CLAVATA (CLV) signaling is crucial for modulating important shoot apical meristem (SAM) characteristics and ultimately regulating diverse SAM-regulated agromorphological traits in crop plants. A genome-wide scan identified 142 CLV1-, 28 CLV2- and 6 CLV3-like genes, and their comprehensive genomic constitution and phylogenetic relationships were deciphered in chickpea. The QTL/fine mapping and map-based cloning integrated with high-resolution association analysis identified SNP loci from CaCLV3_01 gene within a major CaqDTF1.1/CaqFN1.1 QTL associated with DTF (days to 50% flowering) and FN (flower number) traits in chickpea, which was further ascertained by quantitative expression profiling. Molecular haplotyping of CaCLV3_01 gene, expressed specifically in SAM, constituted two major haplotypes that differentiated the early-DTF and high-FN chickpea accessions from late-DTF and low-FN. Enhanced accumulation of transcripts of superior CaCLV3_01 gene haplotype and known flowering promoting genes was observed in the corresponding haplotype-introgressed early-DTF and high-FN near-isogenic lines (NILs) with narrow SAM width. The superior haplotype-introgressed NILs exhibited early-flowering, high-FN and enhanced seed yield/productivity without compromising agronomic performance. These delineated molecular signatures can regulate DTF and FN traits through SAM proliferation and differentiation and thereby will be useful for translational genomic study to develop early-flowering cultivars with enhanced yield/productivity.


Assuntos
Cicer/genética , Flores/fisiologia , Transdução de Sinais , Mapeamento Cromossômico , Cicer/fisiologia , Genoma de Planta , Haplótipos , Proteínas de Membrana/genética , Fenótipo , Filogenia , Proteínas de Plantas/genética , Locos de Características Quantitativas
16.
Int J Mol Sci ; 20(7)2019 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-30935059

RESUMO

Transcriptional regulation includes both activation and repression of downstream genes. In plants, a well-established class of repressors are proteins with an ERF-associated amphiphilic repression/EAR domain. They contain either DLNxxP or LxLxL as the identifying hexapeptide motif. In rice (Oryza sativa), we have identified a total of 266 DLN repressor proteins, with the former motif and its modifications thereof comprising 227 transcription factors and 39 transcriptional regulators. Apart from DLNxxP motif conservation, DLNxP and DLNxxxP motifs with variable numbers/positions of proline and those without any proline conservation have been identified. Most of the DLN repressome proteins have a single DLN motif, with higher relative percentage in the C-terminal region. We have designed a simple yeast-based experiment wherein a DLN motif can successfully cause strong repression of downstream reporter genes, when fused to a transcriptional activator of rice or yeast. The DLN hexapeptide motif is essential for repression, and at least two "DLN" residues cause maximal repression. Comparatively, rice has more DLN repressor encoding genes than Arabidopsis, and DLNSPP motif from rice is 40% stronger than the known Arabidopsis SRDX motif. The study reports a straightforward assay to analyze repressor activity, along with the identification of a strong DLN repressor from rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Motivos de Aminoácidos , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética
17.
Funct Integr Genomics ; 17(6): 711-723, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28600722

RESUMO

A combinatorial genomics-assisted breeding strategy encompassing association analysis, genetic mapping and expression profiling is found most promising for quantitative dissection of complex traits in crop plants. The present study employed GWAS (genome-wide association study) using 24,405 SNPs (single nucleotide polymorphisms) obtained with genotyping-by-sequencing (GBS) of 92 sequenced desi and kabuli accessions of chickpea. This identified eight significant genomic loci associated with erect (E)/semi-erect (SE) vs. spreading (S)/semi-spreading (SS)/prostrate (P) plant growth habit (PGH) trait differentiation regardless of diverse desi and kabuli genetic backgrounds of chickpea. These associated SNPs in combination explained 23.8% phenotypic variation for PGH in chickpea. Five PGH-associated genes were validated successfully in E/SE and SS/S/P PGH-bearing parental accessions and homozygous individuals of three intra- and interspecific RIL (recombinant inbred line) mapping populations as well as 12 contrasting desi and kabuli chickpea germplasm accessions by selective genotyping through Sequenom MassARRAY. The shoot apical, inflorescence and floral meristems-specific expression, including upregulation (seven-fold) of five PGH-associated genes especially in germplasm accessions and homozygous RIL mapping individuals contrasting with E/SE PGH traits was apparent. Collectively, this integrated genomic strategy delineated diverse non-synonymous SNPs from five candidate genes with strong allelic effects on PGH trait variation in chickpea. Of these, two vernalization-responsive non-synonymous SNP alleles carrying SNF2 protein-coding gene and B3 transcription factor associated with PGH traits were found to be the most promising in chickpea. The SNP allelic variants associated with E/SE/SS/S PGH trait differentiation were exclusively present in all cultivated desi and kabuli chickpea accessions while wild species/accessions belonging to primary, secondary and tertiary gene pools mostly contained prostrate PGH-associated SNP alleles. This indicates strong adaptive natural/artificial selection pressure (Tajima's D 3.15 to 4.57) on PGH-associated target genomic loci during chickpea domestication. These vital leads thus have potential to decipher complex transcriptional regulatory gene function of PGH trait differentiation and for understanding the selective sweep-based PGH trait evolution and domestication pattern in cultivated and wild chickpea accessions adapted to diverse agroclimatic conditions. Collectively, the essential inputs generated will be of profound use in marker-assisted genetic enhancement to develop cultivars with desirable plant architecture of erect growth habit types in chickpea.


Assuntos
Cicer/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Cicer/crescimento & desenvolvimento , Genoma de Planta , Estudo de Associação Genômica Ampla , Fenótipo
18.
Nucleic Acids Res ; 42(Database issue): D1214-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24214963

RESUMO

'Manually Curated Database of Rice Proteins' (MCDRP) available at http://www.genomeindia.org/biocuration is a unique curated database based on published experimental data. Semantic integration of scientific data is essential to gain a higher level of understanding of biological systems. Since the majority of scientific data is available as published literature, text mining is an essential step before the data can be integrated and made available for computer-based search in various databases. However, text mining is a tedious exercise and thus, there is a large gap in the data available in curated databases and published literature. Moreover, data in an experiment can be perceived from several perspectives, which may not reflect in the text-based curation. In order to address such issues, we have demonstrated the feasibility of digitizing the experimental data itself by creating a database on rice proteins based on in-house developed data curation models. Using these models data of individual experiments have been digitized with the help of universal ontologies. Currently, the database has data for over 1800 rice proteins curated from >4000 different experiments of over 400 research articles. Since every aspect of the experiment such as gene name, plant type, tissue and developmental stage has been digitized, experimental data can be rapidly accessed and integrated.


Assuntos
Bases de Dados de Proteínas , Oryza/genética , Proteínas de Plantas/fisiologia , Genes de Plantas , Internet , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/química , Proteínas de Plantas/genética
19.
Plant Mol Biol ; 89(4-5): 403-20, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26394865

RESUMO

A combinatorial approach of candidate gene-based association analysis and genome-wide association study (GWAS) integrated with QTL mapping, differential gene expression profiling and molecular haplotyping was deployed in the present study for quantitative dissection of complex flowering time trait in chickpea. Candidate gene-based association mapping in a flowering time association panel (92 diverse desi and kabuli accessions) was performed by employing the genotyping information of 5724 SNPs discovered from 82 known flowering chickpea gene orthologs of Arabidopsis and legumes as well as 832 gene-encoding transcripts that are differentially expressed during flower development in chickpea. GWAS using both genome-wide GBS- and candidate gene-based genotyping data of 30,129 SNPs in a structured population of 92 sequenced accessions (with 200-250 kb LD decay) detected eight maximum effect genomic SNP loci (genes) associated (34% combined PVE) with flowering time. Six flowering time-associated major genomic loci harbouring five robust QTLs mapped on a high-resolution intra-specific genetic linkage map were validated (11.6-27.3% PVE at 5.4-11.7 LOD) further by traditional QTL mapping. The flower-specific expression, including differential up- and down-regulation (>three folds) of eight flowering time-associated genes (including six genes validated by QTL mapping) especially in early flowering than late flowering contrasting chickpea accessions/mapping individuals during flower development was evident. The gene haplotype-based LD mapping discovered diverse novel natural allelic variants and haplotypes in eight genes with high trait association potential (41% combined PVE) for flowering time differentiation in cultivated and wild chickpea. Taken together, eight potential known/candidate flowering time-regulating genes [efl1 (early flowering 1), FLD (Flowering locus D), GI (GIGANTEA), Myb (Myeloblastosis), SFH3 (SEC14-like 3), bZIP (basic-leucine zipper), bHLH (basic helix-loop-helix) and SBP (SQUAMOSA promoter binding protein)], including novel markers, QTLs, alleles and haplotypes delineated by aforesaid genome-wide integrated approach have potential for marker-assisted genetic improvement and unravelling the domestication pattern of flowering time in chickpea.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/genética , Genoma de Planta , Mapeamento Cromossômico , Flores/genética , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos , Desequilíbrio de Ligação , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Fatores de Tempo
20.
J Exp Bot ; 66(5): 1271-90, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25504138

RESUMO

Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.


Assuntos
Cicer/genética , Genoma de Planta , Repetições de Microssatélites , Alelos , Sequência de Bases , Cicer/química , Cicer/classificação , Sequência Conservada , Marcadores Genéticos , Genômica , Genótipo , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Locos de Características Quantitativas , Sementes/química , Sementes/classificação , Sementes/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA