Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell ; 158(3): 492-505, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25083865

RESUMO

To mount an immune response, T lymphocytes must successfully search for foreign material bound to the surface of antigen-presenting cells. How T cells optimize their chances of encountering and responding to these antigens is unknown. T cell motility in tissues resembles a random or Levy walk and is regulated in part by external factors including chemokines and lymph-node topology, but motility parameters such as speed and propensity to turn may also be cell intrinsic. Here we found that the unconventional myosin 1g (Myo1g) motor generates membrane tension, enforces cell-intrinsic meandering search, and enhances T-DC interactions during lymph-node surveillance. Increased turning and meandering motility, as opposed to ballistic motility, is enhanced by Myo1g. Myo1g acts as a "turning motor" and generates a form of cellular "flânerie." Modeling and antigen challenges show that these intrinsically programmed elements of motility search are critical for the detection of rare cognate antigen-presenting cells.


Assuntos
Vigilância Imunológica , Miosinas/metabolismo , Linfócitos T/citologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Membrana Celular/metabolismo , Movimento Celular , Linfonodos/imunologia , Camundongos , Antígenos de Histocompatibilidade Menor , Miosinas/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
Cell ; 157(2): 433-446, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24725409

RESUMO

Transporting epithelial cells build apical microvilli to increase membrane surface area and enhance absorptive capacity. The intestinal brush border provides an elaborate example with tightly packed microvilli that function in nutrient absorption and host defense. Although the brush border is essential for physiological homeostasis, its assembly is poorly understood. We found that brush border assembly is driven by the formation of Ca(2+)-dependent adhesion links between adjacent microvilli. Intermicrovillar links are composed of protocadherin-24 and mucin-like protocadherin, which target to microvillar tips and interact to form a trans-heterophilic complex. The cytoplasmic domains of microvillar protocadherins interact with the scaffolding protein, harmonin, and myosin-7b, which promote localization to microvillar tips. Finally, a mouse model of Usher syndrome lacking harmonin exhibits microvillar protocadherin mislocalization and severe defects in brush border morphology. These data reveal an adhesion-based mechanism for brush border assembly and illuminate the basis of intestinal pathology in patients with Usher syndrome. PAPERFLICK:


Assuntos
Caderinas/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Animais , Células COS , Células CACO-2 , Proteínas Relacionadas a Caderinas , Cálcio/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Chlorocebus aethiops , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Enterócitos/citologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Microvilosidades/ultraestrutura , Miosinas/metabolismo , Síndromes de Usher/patologia
3.
Annu Rev Physiol ; 86: 479-504, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-37863104

RESUMO

Tuft cells are a rare and morphologically distinct chemosensory cell type found throughout many organs, including the gastrointestinal tract. These cells were identified by their unique morphologies distinguished by large apical protrusions. Ultrastructural data have begun to describe the molecular underpinnings of their cytoskeletal features, and tuft cell-enriched cytoskeletal proteins have been identified, although the connection of tuft cell morphology to tuft cell functionality has not yet been established. Furthermore, tuft cells display variations in function and identity between and within tissues, leading to the delineation of distinct tuft cell populations. As a chemosensory cell type, they display receptors that are responsive to ligands specific for their environment. While many studies have demonstrated the tuft cell response to protists and helminths in the intestine, recent research has highlighted other roles of tuft cells as well as implicated tuft cells in other disease processes including inflammation, cancer, and viral infections. Here, we review the literature on the cytoskeletal structure of tuft cells. Additionally, we focus on new research discussing tuft cell lineage, ligand-receptor interactions, tuft cell tropism, and the role of tuft cells in intestinal disease. Finally, we discuss the implication of tuft cell-targeted therapies in human health and how the morphology of tuft cells may contribute to their functionality.


Assuntos
Mucosa Intestinal , Células em Tufo , Humanos , Mucosa Intestinal/metabolismo , Intestinos , Trato Gastrointestinal , Linhagem da Célula
4.
J Biol Chem ; 300(5): 107279, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38588808

RESUMO

Actin bundling proteins crosslink filaments into polarized structures that shape and support membrane protrusions including filopodia, microvilli, and stereocilia. In the case of epithelial microvilli, mitotic spindle positioning protein (MISP) is an actin bundler that localizes specifically to the basal rootlets, where the pointed ends of core bundle filaments converge. Previous studies established that MISP is prevented from binding more distal segments of the core bundle by competition with other actin-binding proteins. Yet whether MISP holds a preference for binding directly to rootlet actin remains an open question. By immunostaining native intestinal tissue sections, we found that microvillar rootlets are decorated with the severing protein, cofilin, suggesting high levels of ADP-actin in these structures. Using total internal reflection fluorescence microscopy assays, we also found that purified MISP exhibits a binding preference for ADP- versus ADP-Pi-actin-containing filaments. Consistent with this, assays with actively growing actin filaments revealed that MISP binds at or near their pointed ends. Moreover, although substrate attached MISP assembles filament bundles in parallel and antiparallel configurations, in solution MISP assembles parallel bundles consisting of multiple filaments exhibiting uniform polarity. These discoveries highlight nucleotide state sensing as a mechanism for sorting actin bundlers along filaments and driving their accumulation near filament ends. Such localized binding might drive parallel bundle formation and/or locally modulate bundle mechanical properties in microvilli and related protrusions.


Assuntos
Actinas , Animais , Citoesqueleto de Actina/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas dos Microfilamentos/metabolismo , Microvilosidades/metabolismo , Ligação Proteica
5.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
6.
PLoS Biol ; 19(12): e3001463, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871294

RESUMO

Enterocytes are specialized epithelial cells lining the luminal surface of the small intestine that build densely packed arrays of microvilli known as brush borders. These microvilli drive nutrient absorption and are arranged in a hexagonal pattern maintained by intermicrovillar links formed by 2 nonclassical members of the cadherin superfamily of calcium-dependent cell adhesion proteins: protocadherin-24 (PCDH24, also known as CDHR2) and the mucin-like protocadherin (CDHR5). The extracellular domains of these proteins are involved in heterophilic and homophilic interactions important for intermicrovillar function, yet the structural determinants of these interactions remain unresolved. Here, we present X-ray crystal structures of the PCDH24 and CDHR5 extracellular tips and analyze their species-specific features relevant for adhesive interactions. In parallel, we use binding assays to identify the PCDH24 and CDHR5 domains involved in both heterophilic and homophilic adhesion for human and mouse proteins. Our results suggest that homophilic and heterophilic interactions involving PCDH24 and CDHR5 are species dependent with unique and distinct minimal adhesive units.


Assuntos
Proteínas Relacionadas a Caderinas/ultraestrutura , Microvilosidades/patologia , Animais , Células CACO-2 , Proteínas Relacionadas a Caderinas/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Adesão Celular , Moléculas de Adesão Celular/metabolismo , Comunicação Celular , Linhagem Celular , Enterócitos/metabolismo , Enterócitos/fisiologia , Células Epiteliais/metabolismo , Humanos , Intestino Delgado/patologia , Intestino Delgado/fisiologia , Camundongos , Microvilosidades/fisiologia , Especificidade da Espécie
7.
Arterioscler Thromb Vasc Biol ; 41(4): 1459-1473, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33567869
8.
PLoS Genet ; 15(6): e1008228, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31220078

RESUMO

Dendrite growth is constrained by a self-avoidance response that induces retraction but the downstream pathways that balance these opposing mechanisms are unknown. We have proposed that the diffusible cue UNC-6(Netrin) is captured by UNC-40(DCC) for a short-range interaction with UNC-5 to trigger self-avoidance in the C. elegans PVD neuron. Here we report that the actin-polymerizing proteins UNC-34(Ena/VASP), WSP-1(WASP), UNC-73(Trio), MIG-10(Lamellipodin) and the Arp2/3 complex effect dendrite retraction in the self-avoidance response mediated by UNC-6(Netrin). The paradoxical idea that actin polymerization results in shorter rather than longer dendrites is explained by our finding that NMY-1 (non-muscle myosin II) is necessary for retraction and could therefore mediate this effect in a contractile mechanism. Our results also show that dendrite length is determined by the antagonistic effects on the actin cytoskeleton of separate sets of effectors for retraction mediated by UNC-6(Netrin) versus outgrowth promoted by the DMA-1 receptor. Thus, our findings suggest that the dendrite length depends on an intrinsic mechanism that balances distinct modes of actin assembly for growth versus retraction.


Assuntos
Actinas/genética , Proteínas de Caenorhabditis elegans/genética , Células Dendríticas/metabolismo , Netrinas/genética , Neurônios/metabolismo , Citoesqueleto de Actina/genética , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Actinas/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Membrana/genética , Cadeias Pesadas de Miosina/genética , Proteínas do Tecido Nervoso/genética , Miosina não Muscular Tipo IIB/genética
9.
J Biol Chem ; 295(48): 16191-16206, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33051206

RESUMO

Solute transporting epithelial cells build arrays of microvilli on their apical surface to increase membrane scaffolding capacity and enhance function potential. In epithelial tissues such as the kidney and gut, microvilli are length-matched and assembled into tightly packed "brush borders," which are organized by ∼50-nm thread-like links that form between the distal tips of adjacent protrusions. Composed of protocadherins CDHR2 and CDHR5, adhesion links are stabilized at the tips by a cytoplasmic tripartite module containing the scaffolds USH1C and ANKS4B and the actin-based motor MYO7B. Because several questions about the formation and function of this "intermicrovillar adhesion complex" remain open, we devised a system that allows one to study individual binary interactions between specific complex components and MYO7B. Our approach employs a chimeric myosin consisting of the MYO10 motor domain fused to the MYO7B cargo-binding tail domain. When expressed in HeLa cells, which do not normally produce adhesion complex proteins, this chimera trafficked to the tips of filopodia and was also able to transport individual complex components to these sites. Unexpectedly, the MYO10-MYO7B chimera was able to deliver CDHR2 and CDHR5 to distal tips in the absence of USH1C or ANKS4B. Cells engineered to localize high levels of CDHR2 at filopodial tips acquired interfilopodial adhesion and exhibited a striking dynamic length-matching activity that aligned distal tips over time. These findings deepen our understanding of mechanisms that promote the distal tip accumulation of intermicrovillar adhesion complex components and also offer insight on how epithelial cells minimize microvillar length variability.


Assuntos
Bioensaio , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microvilosidades/metabolismo , Miosinas/metabolismo , Células CACO-2 , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Células HeLa , Humanos , Microvilosidades/genética , Miosinas/genética
10.
J Biol Chem ; 295(28): 9281-9296, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32209652

RESUMO

Specialized transporting and sensory epithelial cells employ homologous protocadherin-based adhesion complexes to remodel their apical membrane protrusions into organized functional arrays. Within the intestine, the nutrient-transporting enterocytes utilize the intermicrovillar adhesion complex (IMAC) to assemble their apical microvilli into an ordered brush border. The IMAC bears remarkable homology to the Usher complex, whose disruption results in the sensory disorder type 1 Usher syndrome (USH1). However, the entire complement of proteins that comprise both the IMAC and Usher complex are not yet fully elucidated. Using a protein isolation strategy to recover the IMAC, we have identified the small EF-hand protein calmodulin-like protein 4 (CALML4) as an IMAC component. Consistent with this finding, we show that CALML4 exhibits marked enrichment at the distal tips of enterocyte microvilli, the site of IMAC function, and is a direct binding partner of the IMAC component myosin-7b. Moreover, distal tip enrichment of CALML4 is strictly dependent upon its association with myosin-7b, with CALML4 acting as a light chain for this myosin. We further show that genetic disruption of CALML4 within enterocytes results in brush border assembly defects that mirror the loss of other IMAC components and that CALML4 can also associate with the Usher complex component myosin-7a. Our study further defines the molecular composition and protein-protein interaction network of the IMAC and Usher complex and may also shed light on the etiology of the sensory disorder USH1H.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Enterócitos/metabolismo , Cadeias Leves de Miosina/metabolismo , Síndromes de Usher/metabolismo , Animais , Células COS , Células CACO-2 , Calmodulina/genética , Membrana Celular/genética , Membrana Celular/patologia , Chlorocebus aethiops , Enterócitos/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Miosina Tipo II/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/patologia
11.
J Biol Chem ; 294(10): 3454-3463, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30610115

RESUMO

Annexin proteins function as Ca2+-dependent regulators of membrane trafficking and repair that may also modulate membrane curvature. Here, using high-resolution confocal imaging, we report that the intestine-specific annexin A13 (ANX A13) localizes to the tips of intestinal microvilli and determined the crystal structure of the ANX A13a isoform to 2.6 Å resolution. The structure revealed that the N terminus exhibits an alternative fold that converts the first two helices and the associated helix-loop-helix motif into a continuous α-helix, as stabilized by a domain-swapped dimer. We also found that the dimer is present in solution and partially occludes the membrane-binding surfaces of annexin, suggesting that dimerization may function as a means for regulating membrane binding. Accordingly, as revealed by in vitro binding and cellular localization assays, ANX A13a variants that favor a monomeric state exhibited increased membrane association relative to variants that favor the dimeric form. Together, our findings support a mechanism for how the association of the ANX A13a isoform with the membrane is regulated.


Assuntos
Anexinas/química , Anexinas/metabolismo , Membrana Celular/metabolismo , Mucosa Intestinal/metabolismo , Multimerização Proteica , Animais , Células Epiteliais/citologia , Humanos , Concentração de Íons de Hidrogênio , Intestinos , Lipossomos/metabolismo , Camundongos , Modelos Moleculares , Especificidade de Órgãos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Estrutura Quaternária de Proteína , Transporte Proteico
12.
Proc Natl Acad Sci U S A ; 114(19): E3776-E3785, 2017 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-28439001

RESUMO

Unconventional myosin 7a (Myo7a), myosin 7b (Myo7b), and myosin 15a (Myo15a) all contain MyTH4-FERM domains (myosin tail homology 4-band 4.1, ezrin, radixin, moesin; MF) in their cargo binding tails and are essential for the growth and function of microvilli and stereocilia. Numerous mutations have been identified in the MyTH4-FERM tandems of these myosins in patients suffering visual and hearing impairment. Although a number of MF domain binding partners have been identified, the molecular basis of interactions with the C-terminal MF domain (CMF) of these myosins remains poorly understood. Here we report the high-resolution crystal structure of Myo7b CMF in complex with the extended PDZ3 domain of USH1C (a.k.a., Harmonin), revealing a previously uncharacterized interaction mode both for MyTH4-FERM tandems and for PDZ domains. We predicted, based on the structure of the Myo7b CMF/USH1C PDZ3 complex, and verified that Myo7a CMF also binds to USH1C PDZ3 using a similar mode. The structure of the Myo7b CMF/USH1C PDZ complex provides mechanistic explanations for >20 deafness-causing mutations in Myo7a CMF. Taken together, these findings suggest that binding to PDZ domains, such as those from USH1C, PDZD7, and Whirlin, is a common property of CMFs of Myo7a, Myo7b, and Myo15a.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Complexos Multiproteicos/química , Miosinas/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Miosina VIIa , Miosinas/genética , Miosinas/metabolismo , Domínios PDZ , Estrutura Quaternária de Proteína
13.
J Cell Sci ; 130(15): 2491-2505, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596241

RESUMO

Misplaced formation of microvilli to basolateral domains and intracellular inclusions in enterocytes are pathognomonic features in congenital enteropathy associated with mutation of the apical plasma membrane receptor syntaxin 3 (STX3). Although the demonstrated binding of Myo5b to the Rab8a and Rab11a small GTPases in vitro implicates cytoskeleton-dependent membrane sorting, the mechanisms underlying the microvillar location defect remain unclear. By selective or combinatory disruption of Rab8a and Rab11a membrane traffic in vivo, we demonstrate that transport of distinct cargo to the apical brush border rely on either individual or both Rab regulators, whereas certain basolateral cargos are redundantly transported by both factors. Enterocyte-specific Rab8a and Rab11a double-knockout mouse neonates showed immediate postnatal lethality and more severe enteropathy than single knockouts, with extensive formation of microvilli along basolateral surfaces. Notably, following an inducible Rab11a deletion from neonatal enterocytes, basolateral microvilli were induced within 3 days. These data identify a potentially important and distinct mechanism for a characteristic microvillus defect exhibited by enterocytes of patients with neonatal enteropathy.


Assuntos
Enterócitos/metabolismo , Doenças Genéticas Inatas/metabolismo , Enteropatias/metabolismo , Microvilosidades/metabolismo , Proteínas rab de Ligação ao GTP/deficiência , Animais , Enterócitos/patologia , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Enteropatias/congênito , Enteropatias/patologia , Camundongos , Camundongos Knockout , Microvilosidades/genética , Microvilosidades/patologia , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
14.
J Biol Chem ; 291(43): 22781-22792, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27582493

RESUMO

Class III myosins (MYO3A and MYO3B) are proposed to function as transporters as well as length and ultrastructure regulators within stable actin-based protrusions such as stereocilia and calycal processes. MYO3A differs from MYO3B in that it contains an extended tail domain with an additional actin-binding motif. We examined how the properties of the motor and tail domains of human class III myosins impact their ability to enhance the formation and elongation of actin protrusions. Direct examination of the motor and enzymatic properties of human MYO3A and MYO3B revealed that MYO3A is a 2-fold faster motor with enhanced ATPase activity and actin affinity. A chimera in which the MYO3A tail was fused to the MYO3B motor demonstrated that motor activity correlates with formation and elongation of actin protrusions. We demonstrate that removal of individual exons (30-34) in the MYO3A tail does not prevent filopodia tip localization but abolishes the ability to enhance actin protrusion formation and elongation in COS7 cells. Interestingly, our results demonstrate that MYO3A slows filopodia dynamics and enhances filopodia lifetime in COS7 cells. We also demonstrate that MYO3A is more efficient than MYO3B at increasing formation and elongation of stable microvilli on the surface of cultured epithelial cells. We propose that the unique features of MYO3A, enhanced motor activity, and an extended tail with tail actin-binding motif, allow it to play an important role in stable actin protrusion length and ultrastructure maintenance.


Assuntos
Actinas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Pseudópodes/metabolismo , Actinas/genética , Animais , Células COS , Chlorocebus aethiops , Humanos , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Pseudópodes/genética
16.
Biophys J ; 106(3): 649-58, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24507605

RESUMO

Class 1 myosins are monomeric motor proteins that fulfill diverse functions at the membrane/cytoskeletal interface. All myosins-1 contain a motor domain, which binds actin, hydrolyzes ATP, and generates forces, and a TH1 domain, which interacts directly with membrane lipids. In most cases, TH1 is needed for proper subcellular localization and presumably function, although little is known about how this domain regulates the behavior of class 1 myosins in live cells. To address this, we used single molecule total internal reflection fluorescence microscopy to examine the dynamics of the well-characterized myosin-1a isoform during interactions with the cortex of living cells. Our studies revealed that full-length myosin-1a exhibits restricted mobility relative to TH1 alone. Motor domain mutations that disrupt actin binding increased the mobility of full-length myosin-1a, whereas mutations to the TH1 domain that are known to reduce steady-state targeting to the plasma membrane unexpectedly reduced mobility. Deletion of the calmodulin-binding lever arm in Myo1a mimicked the impact of actin-binding mutations. Finally, myosin-1b, which demonstrates exquisite sensitivity to mechanical load, exhibited dynamic behavior nearly identical to myosin-1a. These studies are the first, to our knowledge, to explore class 1 myosin dynamics at the single-molecule level in living cells; our results suggest a model where the motor domain restricts dynamics via a mechanism that requires the lever arm, whereas the TH1 domain allows persistent diffusion in close proximity to the plasma membrane.


Assuntos
Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo I/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Linhagem Celular , Membrana Celular/metabolismo , Mutação , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/genética , Miosina Tipo I/química , Miosina Tipo I/genética , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Suínos
17.
Blood ; 119(2): 445-53, 2012 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-22106344

RESUMO

ERM (ezrin, radixin moesin) proteins in lymphocytes link cortical actin to plasma membrane, which is regulated in part by ERM protein phosphorylation. To assess whether phosphorylation of ERM proteins regulates lymphocyte migration and membrane tension, we generated transgenic mice whose T-lymphocytes express low levels of ezrin phosphomimetic protein (T567E). In these mice, T-cell number in lymph nodes was reduced by 27%. Lymphocyte migration rate in vitro and in vivo in lymph nodes decreased by 18% to 47%. Lymphocyte membrane tension increased by 71%. Investigations of other possible underlying mechanisms revealed impaired chemokine-induced shape change/lamellipod extension and increased integrin-mediated adhesion. Notably, lymphocyte homing to lymph nodes was decreased by 30%. Unlike most described homing defects, there was not impaired rolling or sticking to lymph node vascular endothelium but rather decreased migration across that endothelium. Moreover, decreased numbers of transgenic T cells in efferent lymph suggested defective egress. These studies confirm the critical role of ERM dephosphorylation in regulating lymphocyte migration and transmigration. Of particular note, they identify phospho-ERM as the first described regulator of lymphocyte membrane tension, whose increase probably contributes to the multiple defects observed in the ezrin T567E transgenic mice.


Assuntos
Membrana Celular/patologia , Movimento Celular/fisiologia , Proteínas do Citoesqueleto/fisiologia , Linfonodos/patologia , Mutação/genética , Linfócitos T/patologia , Migração Transendotelial e Transepitelial/fisiologia , Animais , Membrana Celular/metabolismo , Linfonodos/metabolismo , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fosfoproteínas/metabolismo , Fosforilação , Linfócitos T/metabolismo
18.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798618

RESUMO

Animal cells build actin-based surface protrusions to enable biological activities ranging from cell motility to mechanosensation to solute uptake. Long-standing models of protrusion growth suggest that actin filament polymerization provides the primary mechanical force for "pushing" the plasma membrane outward at the distal tip. Expanding on these actin-centric models, our recent studies used a chemically inducible system to establish that plasma membrane-bound myosin motors, which are abundant in protrusions and accumulate at the distal tips, can also power robust filopodial growth. How protrusion resident myosins coordinate with actin polymerization to drive elongation remains unclear, in part because the number of force generators and thus, the scale of their mechanical contributions remain undefined. To address this gap, we leveraged the SunTag system to count membrane-bound myosin motors in actively growing filopodia. Using this approach, we found that the number of myosins is log-normally distributed with a mean of 12.0 ± 2.5 motors [GeoMean ± GeoSD] per filopodium. Together with unitary force values and duty ratio estimates derived from biophysical studies for the motor used in these experiments, we calculate that a distal tip population of myosins could generate a time averaged force of ∼tens of pN to elongate filopodia. This range is comparable to the expected force production of actin polymerization in this system, a point that necessitates revision of popular physical models for protrusion growth. SIGNIFICANCE STATEMENT: This study describes the results of in-cell molecular counting experiments to define the number of myosin motors that are mechanically active in growing filopodia. This data should be used to constrain future physical models of the formation of actin-based protrusions.

19.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562895

RESUMO

Transporting epithelial cells in the gut and kidney rely on protocadherin-based apical adhesion complexes to organize microvilli that extend into the luminal space. In these systems, CDHR2 and CDHR5 localize to the distal ends of microvilli, where they form an intermicrovillar adhesion complex (IMAC) that links the tips of these structures, promotes the formation of a well-ordered array of protrusions, and in turn maximizes apical membrane surface area. Recently, we discovered that IMACs can also form between microvilli that extend from neighboring cells, across cell-cell junctions. As an additional point of physical contact between cells, transjunctional IMACs are well positioned to impact the integrity of canonical tight and adherens junctions that form more basolaterally. Here, we sought to test this idea using cell culture and mouse models that lacked CDHR2 expression and were unable to form IMACs. CDHR2 knockout perturbed cell and junction morphology, led to loss of key components from tight and adherens junctions, and impaired barrier function and wound healing. These results indicate that, in addition to organizing apical microvilli, IMACs provide a layer of cell-cell contact that functions in parallel with canonical tight and adherens junctions to support the physiological functions of transporting epithelia.

20.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562898

RESUMO

Background & Aims: All tissues consist of a distinct set of cell types, which collectively support organ function and homeostasis. Tuft cells are a rare epithelial cell type found in diverse epithelia, where they play important roles in sensing antigens and stimulating downstream immune responses. Exhibiting a unique polarized morphology, tuft cells are defined by an array of giant actin filament bundles that support ∼2 µm of apical membrane protrusion and extend over 7 µm towards the cell's perinuclear region. Despite their established roles in maintaining intestinal epithelial homeostasis, tuft cells remain understudied due to their rarity (e.g. ∼ 1% in the small intestinal epithelium). Details regarding the ultrastructural organization of the tuft cell cytoskeleton, the molecular components involved in building the array of giant actin bundles, and how these cytoskeletal structures support tuft cell biology remain unclear. Methods: To begin to answer these questions, we used advanced light and electron microscopy to perform quantitative morphometry of the small intestinal tuft cell cytoskeleton. Results: We found that tuft cell core bundles consist of actin filaments that are crosslinked in a parallel "barbed-end out" configuration. These polarized structures are also supported by a unique group of tuft cell enriched actin-binding proteins that are differentially localized along the giant core bundles. Furthermore, we found that tuft cell actin bundles are co-aligned with a highly ordered network of microtubules. Conclusions: Tuft cells assemble a cytoskeletal superstructure that is well positioned to serve as a track for subcellular transport along the apical-basolateral axis and in turn, support the dynamic sensing functions that are critical for intestinal epithelial homeostasis. SYNOPSIS: This research leveraged advanced light and electron microscopy to perform quantitative morphometry of the intestinal tuft cell cytoskeleton. Three-dimensional reconstructions of segmented image data revealed a co-aligned actin-microtubule superstructure that may play a fundamental role in tuft cell function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA