Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pain ; 14: 1744806918754934, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310499

RESUMO

Various small molecules act as neurotransmitters and orchestrate neural communication. Growing evidence suggests that not only classical neurotransmitters but also several small molecules, including amino acid derivatives, modulate synaptic transmission. As conditions of acute and chronic pain alter neuronal excitability in the nucleus accumbens, we hypothesized that small molecules released in the nucleus accumbens might play important roles in modulating the pain sensation. However, it is not easy to identify possible pain modulators owing to the absence of a method for comprehensively measuring extracellular small molecules in the brain. In this study, through the use of an emerging metabolomics technique, namely ion chromatography coupled with high-resolution mass spectrometry, we simultaneously analyzed the dynamics of more than 60 small molecules in brain fluids collected by microdialysis, under both the application of pain stimuli and the administration of analgesics. We identified N-acetylaspartylglutamate as a potential pain modulator that is endogenously released in the nucleus accumbens. Infusion of N-acetylaspartylglutamate into the nucleus accumbens significantly attenuated the pain induced by the activation of sensory nerves through optical stimulation. These findings suggest that N-acetylaspartylglutamate released in the nucleus accumbens could modulate pain sensation.


Assuntos
Dipeptídeos/metabolismo , Espaço Extracelular/metabolismo , Espectrometria de Massas , Microdiálise , Núcleo Accumbens/metabolismo , Dor/metabolismo , Sensação , Analgesia , Animais , Comportamento Animal , Líquidos Corporais/metabolismo , Channelrhodopsins/metabolismo , Dopamina/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Optogenética , Dor/patologia , Limiar da Dor , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Bibliotecas de Moléculas Pequenas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA