Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(2): 271-284, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305951

RESUMO

Ultraviolet A (UVA) radiation, present in sunlight, can induce cell redox imbalance leading to cellular damage and even cell death, compromising skin health. Here, we evaluated the in vitro antioxidant and photochemoprotective effect of dithiothreitol (DTT). DTT neutralized the free radicals 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS·+), 2,2-diphenyl-1-picrylhydrazyl (DPPH·), and superoxide anion (O2·-) in in vitro assays, as well as the ferric ion (Fe3+) in the ferric reducing antioxidant power (FRAP) assay. We also evaluated the effect of DTT pre-treatment in L929 dermal fibroblasts and DTT (50 and 100 µM) led to greater cell viability following UVA-irradiation compared to cells that were untreated. Furthermore, the pre-treatment of cells with DTT prevented the increase of intracellular reactive oxygen species (ROS) production, including hydrogen peroxide (H2O2), lipid peroxidation, and DNA condensation, as well as the decrease in mitochondrial membrane potential (Δψm), that occurred following irradiation in untreated cells. The endogenous antioxidant system of cells was also improved in irradiated cells that were DTT pre-treated compared to the untreated cells, as the activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes remained as high as non-irradiated cells, while the activity levels were depleted in the untreated irradiated cells. Furthermore, DTT reduced necrosis in UVA-irradiated fibroblasts. Together, these results showed that DTT may have promising use in the prevention of skin photoaging and photodamage induced by UVA, as it provided photochemoprotection against the harmful effects of this radiation, reducing oxidative stress and cell death, due mainly to its antioxidant capacity.


Assuntos
Antioxidantes , Peróxido de Hidrogênio , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Ditiotreitol/farmacologia , Ditiotreitol/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Pele/efeitos da radiação , Raios Ultravioleta , Necrose , Fibroblastos
2.
Arch Virol ; 168(5): 153, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140819

RESUMO

New antiviral agents for the treatment of herpes simplex virus type 1 (HSV-1) infection, which causes a highly prevalent and incurable disease, are needed. Here, we report for the first time the in vitro anti-HSV-1 activity of two dibenzylideneketone compounds: DBK1 and DBK2. DBK1 demonstrated virucidal activity, and high-resolution scanning electron microscopy showed that it caused morphological changes in the HSV-1 envelope. DBK2 was able to reduce HSV-1 plaque size in vitro. The DBKs are promising anti-HSV-1 candidates, as they exhibit low toxicity and exert an antiviral effect by acting at the early stages of HSV-1-host cell interaction.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico
3.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040656

RESUMO

AIM: This study aims to incorporate alginate microparticles containing berberine and fluconazole into two different types of pharmaceutical formulations, to subsequently evaluate the antifungal activity against Candida albicans. METHODS AND RESULTS: Alginate microparticles containing BBR (berberine) and FLU (fluconazole) were produced by the spray-drying technique, characterized and incorporated in two pharmaceutical formulations, a vaginal cream and artificial saliva. Broth microdilution, checkerboard, time-kill curve, and scanning electron microscopy were carried out to determine the antifungal effects of BBR and FLU against C. albicans. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of free BBR were 125 µg ml-1. Synergism between BBR and FLU was demonstrated by a fractional inhibitory concentration index (FICI) = 0.0762. The time-kill curve for the combination BBR + FLU showed a more pronounced decrease in fungal growth in comparison to free drugs, and an antibiofilm effect of BBR occurred in the formation and preformed biofilm. CONCLUSION: Alginate microparticles containing BBR and FLU were obtained and incorporated in a vaginal cream and artificial saliva. Both formulations showed good stability, antifungal effects, and organoleptic characteristics, which suggest that BBR-FLU microparticles in formulations have potential as antifungal therapy.


Assuntos
Berberina , Candidíase , Humanos , Feminino , Fluconazol/farmacologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Berberina/farmacologia , Saliva Artificial/farmacologia , Saliva Artificial/uso terapêutico , Cremes, Espumas e Géis Vaginais/farmacologia , Cremes, Espumas e Géis Vaginais/uso terapêutico , Candidíase/microbiologia , Candida albicans , Testes de Sensibilidade Microbiana , Alginatos/farmacologia , Sinergismo Farmacológico , Farmacorresistência Fúngica
4.
Chem Biodivers ; 20(7): e202300523, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263974

RESUMO

Leishmaniasis is a tropical zoonotic disease. It is found in 98 countries, with an estimated 1.3 million people being affected annually. During the life cycle, the Leishmania parasite alternates between promastigote and amastigote forms. The first line treatment for leishmaniasis are the pentavalent antimonials, such as N-methylglucamine antimoniate (Glucantime®) and sodium stibogluconate (Pentostam®). These drugs are commonly related to be associated with dangerous side effects such as cardiotoxicity, nephrotoxicity, hepatotoxicity, and pancreatitis. Considering these aspects, this work aimed to obtain a new series of limonene-acylthiosemicarbazides hybrids as an alternative for the treatment of leishmaniasis. For this, promastigotes, axenic amastigotes, and intracellular amastigotes of Leishmania amazonensis were used in the antiproliferative assay; J774-A1 macrophages for the cytotoxicity assay; and electron microscopy techniques were performed to analyze the morphology and ultrastructure of parasites. ATZ-S-04 compound showed the best result in both tests. Its IC50 , in promastigotes, axenic amastigotes and intracellular amastigotes was 0.35±0.08 µM, 0.49±0.06 µM, and 15.90±2.88 µM, respectively. Cytotoxicity assay determined a CC50 of 16.10±1.76 µM for the same compound. By electron microscopy, it was observed that ATZ-S-04 affected mainly the Golgi complex, in addition to morphological changes in promastigote forms of L. amazonensis.


Assuntos
Antiprotozoários , Leishmania , Leishmaniose , Humanos , Animais , Camundongos , Limoneno/farmacologia , Antiprotozoários/farmacologia , Antiprotozoários/química , Leishmaniose/parasitologia , Macrófagos , Antimoniato de Meglumina/farmacologia , Camundongos Endogâmicos BALB C
5.
Molecules ; 28(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37175359

RESUMO

Breast cancer is the most common type of cancer and the leading cause of cancer mortality among women worldwide. Considering the limitations of the current treatments available, we analyzed the in vitro cytotoxic potential of ((4-Fluoro-phenyl)-{2-[(1-phenyl-9H-ß-carboline-3-carbonyl)-amino]-ethylamino}-methyl)-phosphonic acid dibutyl ester (BCP-1) in breast cancer cells (MCF-7 and MDA-MB-231) and in a non-tumor breast cell line (MCF-10A). BCP-1 has an α-aminophosphonate unit linked to the ß-carboline nucleus, and the literature indicates that compounds of these classes have high biological potential. In the present study, the mechanism of action of BCP-1 was investigated through methods of spectrofluorimetry, flow cytometry, and protein expression analysis. It was found that BCP-1 inhibited the proliferation of both cancer cell lines. Furthermore, it induced oxidative stress and cell cycle arrest in G2/M. Upregulation of apoptosis-related proteins such as Bax, cytochrome C, and caspases, as well as a decrease in the anti-apoptotic protein Bcl-2, indicated potential induction of apoptosis in the MDA-MB-231 cells. While in MCF-7 cells, BCP-1 activated the autophagic death pathway, which was demonstrated by an increase in autophagic vacuoles and acidic organelles, in addition to increased expression of LC3I/LC3II and reduced SQSTM1/p62 expression. Further, BCP-1 demonstrated antimetastatic potential by reducing MMP-9 expression and cell migration in both breast cancer cell lines. In conclusion, BCP-1 is a promising candidate for breast cancer chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pontos de Checagem do Ciclo Celular , Células MCF-7 , Apoptose , Proteínas Reguladoras de Apoptose , Carbolinas/farmacologia , Proliferação de Células , Linhagem Celular Tumoral
6.
Mem Inst Oswaldo Cruz ; 117: e220396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35352776

RESUMO

Over the past years, natural products have been explored in order to find biological active substances to treat various diseases. Regarding their potential action against parasites such as trypanosomatids, specially Trypanosoma cruzi and Leishmania spp., much advance has been achieved. Extracts and purified molecules of several species from genera Piper, Tanacetum, Porophyllum, and Copaifera have been widely investigated by our research group and exhibited interesting antitrypanosomal and antileishmanial activities. These natural compounds affected different structures in parasites, and we believe that the mitochondrion is a strategic target to induce parasite death. Considering that these trypanosomatids have a unique mitochondrion, this cellular target has been extensively studied aiming to find more selective drugs, since the current treatment of these neglected tropical diseases has some challenges such as high toxicity and prolonged treatment time. Here, we summarise some results obtained with natural products from our research group and we further highlighted some strategies that must be considered to finally develop an effective chemotherapeutic agent against these parasites.


Assuntos
Doença de Chagas , Leishmania , Leishmaniose , Trypanosoma cruzi , Doença de Chagas/tratamento farmacológico , Humanos , Leishmaniose/tratamento farmacológico , Mitocôndrias
7.
Parasitol Res ; 118(3): 977-989, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30694414

RESUMO

Despite many efforts, the currently available treatments for leishmaniasis are not fully effective. To discover new medications, drug repurposing arises as a promising strategy. We present data that supports the use of the antidepressant clomipramine against Leishmania amazonensis. The drug presented selective activity at micromolar range against both the parasite forms and stimulated nitric oxide production in host macrophages. Regarding the mechanism of action, clomipramine led parasites do mitochondrial depolarization, which coupled with the inhibition of trypanothione reductase induced strong oxidative stress in the parasites. The effects observed in promastigotes included lipoperoxidation, plasma membrane permeabilization, and apoptosis hallmarks (i.e., DNA fragmentation, phosphatidylserine exposure, and cell shrinkage). The mechanism of action in both parasitic forms was quite similar, but amastigotes also exhibited energetic stress, reflected by a reduction of adenosine triphosphate levels. Such differential effects might be attributable to the metabolic particularities of each form of the parasitic. Ultrastructural alterations of the endomembrane system and autophagy were also observed, possibly indicating an adaptive response to oxidative stress. Our results suggest that clomipramine interferes with the redox metabolism of L. amazonensis. In spite of the cellular responses to recover the cellular homeostasis, parasites underwent programmed cell death.


Assuntos
Antiprotozoários/farmacologia , Apoptose/efeitos dos fármacos , Clomipramina/farmacologia , Leishmania/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Animais , Antidepressivos Tricíclicos/farmacologia , Linhagem Celular , Macrófagos/efeitos dos fármacos , Camundongos
8.
Intervirology ; 61(1): 14-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30001535

RESUMO

BACKGROUND/AIMS: Parthenolide is a sesquiterpene lactone that is present in plants of the Tanacetum genus, for which many biological effects have already been reported, including antiherpetic activity. Although the effectiveness of parthenolide against Herpes simplex virus 1 (HSV-1) has already been demonstrated, such findings are still controversial. The objective of this study was to investigate the ways in which parthenolide exerts anti-HSV-1 activity. METHODS: The cytotoxicity and antiviral activity of parthenolide were determined by the MTT method and plaque reduction assay, respectively. The expression of cell and viral proteins during the treatment of infected cells was investigated by Western blot. RESULTS: Both strains of HSV-1 were sensitive to parthenolide, and parthenolide was active only after penetration of the virus into the host cell. The expression of p65 protein decreased, the expression of caspases 8 and 9 increased, and the expression of c-Jun N-terminal kinase (JNK) and p38 protein was altered in infected cells after parthenolide treatment, resulting in lower cell survival. The low expression of viral proteins gB, gD, and ICP0 confirmed the reduction of HSV-1 particle production. CONCLUSION: Parthenolide exerts anti-HSV-1 activity by impairing cell viability, which consequently interferes with the efficient infection and production of new viral particles.


Assuntos
Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Sesquiterpenos/farmacologia , Tanacetum/química , Animais , Caspases/efeitos dos fármacos , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Herpes Simples/virologia , Herpesvirus Humano 1/fisiologia , Humanos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Componentes Aéreos da Planta/química , Células Vero , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos
9.
Bioorg Med Chem ; 26(14): 4065-4072, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30100019

RESUMO

Continuous efforts have been made to discover new drugs for the treatment of Chagas' disease, human African trypanosomiasis, and leishmaniasis. We have previously reported the synthesis and antileishmanial and antitrypanosomal (Y strain) properties of 2,3-disubstituted quinoxalines. Considering their promising antiparasitic potential, the present study was conducted to expand our search and take advantage of high-throughput assays to investigate the effects of quinoxaline derivatives against Leishmania donovani, Trypanosoma brucei, and Trypanosoma cruzi (Tulahuen strain). These compounds were active against the kinetoplastid parasites that were evaluated. The 2-chloro-3-methylsulfoxylsulfonyl and 2-chloro-3-methylsulfinyl quinoxalines were the most potent, and some of these derivatives were even more active than the reference drugs. Although the 2,3-diaryl-substituted quinoxalines were not active against all of the parasites, they were active against T. brucei and intracellular amastigotes of T. cruzi, without interfering with mammalian cell viability. These compounds presented encouraging results that will guide our future studies on in vivo bioassays towards the mode of action.


Assuntos
Antiprotozoários/farmacologia , Leishmania donovani/efeitos dos fármacos , Quinoxalinas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma cruzi/efeitos dos fármacos , Antiprotozoários/síntese química , Antiprotozoários/química , Relação Dose-Resposta a Droga , Estrutura Molecular , Testes de Sensibilidade Parasitária , Quinoxalinas/síntese química , Quinoxalinas/química , Relação Estrutura-Atividade
10.
Apoptosis ; 22(1): 57-71, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27761752

RESUMO

Leishmaniasis is a neglected tropical disease that affects millions of people worldwide. Current therapies mainly rely on antimonial drugs that are inadequate because of their high toxicity and increased drug resistance. An urgent need exists to discover new, more effective, more affordable, and more target-specific drugs. Pathways that are associated with apoptosis-like cell death have been identified in unicellular eukaryotes, including protozoan parasites. In the present study, we studied the mechanism of cell death that is induced by A3K2A3 against L. amazonensis. A3K2A3 is a dibenzylideneacetone that has an acyclic dienone that is attached to aryl groups in both ß-positions, which is similar to curcuminoids and chalcone structures. This compound was previously shown to be safe with regard to cytotoxicity and active against the parasite. Biochemical and morphological approaches were used in the present study. The results suggested that A3K2A3 caused mitochondrial dysfunction in L. amazonensis promastigotes, leading to mechanisms of cell death that share some common phenotypic features with metazoan apoptosis, such as an increase in reactive oxygen species production, a decrease in the adenosine triphosphate ratio, phosphatidylserine exposure, a decrease in cell volume, caspase production, and DNA fragmentation. Altogether, these findings indicate that apoptosis can indeed be triggered by chemotherapeutic agents.


Assuntos
Apoptose/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Pentanonas/administração & dosagem , Trifosfato de Adenosina/metabolismo , Animais , Fragmentação do DNA/efeitos dos fármacos , Humanos , Leishmania/patogenicidade , Leishmaniose/parasitologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
11.
Planta Med ; 83(6): 509-518, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27706530

RESUMO

Herpes simplex virus infections persist throughout the lifetime of the host and affect more than 80 % of the humans worldwide. The intensive use of available therapeutic drugs has led to undesirable effects, such as drug-resistant strains, prompting the search for new antiherpetic agents. Although diverse bioactivities have been identified in Schinus terebinthifolia, its antiviral activity has not attracted much attention. The present study evaluated the antiherpetic effects of a crude hydroethanolic extract from the stem bark of S. terebinthifolia against Herpes simplex virus type 1 in vitro and in vivo as well as its genotoxicity in bone marrow in mammals and established the chemical composition of the crude hydroethanolic extract based on liquid chromatography-diode array detector-mass spectrometry and MS/MS. The crude hydroethanolic extract inhibited all of the tested Herpes simplex virus type 1 strains in vitro and was effective in the attachment and penetration stages, and showed virucidal activity, which was confirmed by transmission electron microscopy. The micronucleus test showed that the crude hydroethanolic extract had no genotoxic effect at the concentrations tested. The crude hydroethanolic extract afforded protection against lesions that were caused by Herpes simplex virus type 1 in vivo. Liquid chromatography-diode array detector-mass spectrometry and MS/MS identified 25 substances, which are condensed tannins mainly produced by a B-type linkage and prodelphinidin and procyanidin units.


Assuntos
Anacardiaceae/química , Antivirais/farmacocinética , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antivirais/química , Antivirais/isolamento & purificação , Antivirais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida , Feminino , Herpes Simples/virologia , Herpesvirus Humano 1/ultraestrutura , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Casca de Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Espectrometria de Massas em Tandem , Taninos/análise , Taninos/química , Células Vero
12.
Antimicrob Agents Chemother ; 60(6): 3433-44, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001812

RESUMO

Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·(-)) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·(-) concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis.


Assuntos
Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Leishmaniose/tratamento farmacológico , Quinoxalinas/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Membrana Celular/fisiologia , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Fosfatidilserinas/metabolismo , Superóxidos/metabolismo
13.
Antimicrob Agents Chemother ; 60(2): 890-903, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596953

RESUMO

Despite ongoing efforts, the available treatments for Chagas' disease are still unsatisfactory, especially in the chronic phase of the disease. Our previous study reported the strong trypanocidal activity of the dibenzylideneacetones A3K2A1 and A3K2A3 against Trypanosoma cruzi (Z. Ud Din, T. P. Fill, F. F. de Assis, D. Lazarin-Bidóia, V. Kaplum, F. P. Garcia, C. V. Nakamura, K. T. de Oliveira, and E. Rodrigues-Filho, Bioorg Med Chem 22:1121-1127, 2014, http://dx.doi.org/10.1016/j.bmc.2013.12.020). In the present study, we investigated the mechanisms of action of these compounds that are involved in parasite death. We showed that A3K2A1 and A3K2A3 induced oxidative stress in the three parasitic forms, especially trypomastigotes, reflected by an increase in oxidant species production and depletion of the endogenous antioxidant system. This oxidative imbalance culminated in damage in essential cell structures of T. cruzi, reflected by lipid peroxidation and DNA fragmentation. Consequently, A3K2A1 and A3K2A3 induced vital alterations in T. cruzi, leading to parasite death through the three pathways, apoptosis, autophagy, and necrosis.


Assuntos
Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Células Epiteliais/parasitologia , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Óxido Nítrico/metabolismo , Oxirredução , Pentanonas/farmacologia , Fosfatidilserinas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Compostos de Sulfidrila/metabolismo , Tripanossomicidas/química , Trypanosoma cruzi/metabolismo
14.
Int J Med Microbiol ; 306(4): 196-205, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27086198

RESUMO

Drug repositioning, i.e. use of existing medicals to treat a different illness, is especially rewarding for neglected tropical diseases (NTD), since in this field the pharmaceutical industry is rather reluctant to spend vast investments for drug development. NTDs afflict primarily poor populations in under-developed countries, which minimizes financial profit. Here we investigated the trypanocidal effect of clomipramine, a commercial antipsychotic drug, on Trypanosoma brucei. The data showed that this drug killed the parasite with an IC50 of about 5µM. Analysis of the involved cell death mechanism revealed furthermore an initial autophagic stress response and finally the induction of apoptosis. The latter was substantiated by a set of respective markers such as phosphatidylserine exposition, DNA degradation, loss of the inner mitochondrial membrane potential and characteristic morphological changes. Clomipramine was described as a trypanothione inhibitor, but as judged from our results it also showed DNA binding capacities and induced substantial morphological changes. We thus consider it likely that the drug induces a multifold adverse interaction with the parasite's physiology and induces stress in a way that trypanosomes cannot cope with.


Assuntos
Antiprotozoários/farmacologia , Apoptose , Clomipramina/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50
15.
Parasitology ; 142(7): 978-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25711881

RESUMO

Trypanosoma cruzi is the causative agent of Chagas' disease, a parasitic disease that remains a serious health concern with unsatisfactory treatment. Drugs that are currently used to treat Chagas' disease are partially effective in the acute phase but ineffective in the chronic phase of the disease. The aim of the present study was to evaluate the antitrypanosomal activity and morphological, ultrastructural and biochemical alterations induced by a new molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-(-)-limonene against epimastigote, trypomastigote and intracellular amastigote forms of T. cruzi. BZTS inhibited the growth of epimastigotes (IC50 = 9·2 µ m), intracellular amastigotes (IC50 = 3·23 µ m) and inhibited the viability of trypomastigotes (EC50 = 1·43 µ m). BZTS had a CC50 of 37·45 µ m in LLCMK2 cells. BZTS induced rounding and distortion of the cell body and severely damaged parasite mitochondria, reflected by extensive swelling and disorganization in the inner mitochondrial membrane and the presence of concentric membrane structures inside the organelle. Cytoplasmic vacuolization, endoplasmic reticulum that surrounded organelles, the loss of mitochondrial membrane potential, and increased mitochondrial O2 •- production were also observed. Our results suggest that BZTS alters the ultrastructure and physiology of mitochondria, which could be closely related to parasite death.


Assuntos
Cicloexenos/química , Estágios do Ciclo de Vida/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Terpenos/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Benzaldeídos/química , Benzaldeídos/farmacologia , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Retículo Endoplasmático/ultraestrutura , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/parasitologia , Estágios do Ciclo de Vida/fisiologia , Limoneno , Macaca mulatta , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Superóxidos/agonistas , Superóxidos/metabolismo , Tiossemicarbazonas/química , Tiossemicarbazonas/farmacologia , Tripanossomicidas/química , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/ultraestrutura
16.
Antimicrob Agents Chemother ; 58(7): 3957-67, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24798291

RESUMO

The effect of a meropenem-ciprofloxacin combination (MCC) on the susceptibility of multidrug-resistant (MDR) Pseudomonas aeruginosa (MRPA) clinical isolates was determined using checkerboard and time-kill curve techniques. Structural changes and differential gene expression that resulted from the synergistic action of the MCC against one of the P. aeruginosa isolates (1071-MRPA]) were evaluated using electron microscopy and representational difference analysis (RDA), respectively. The differentially expressed, SOS response-associated, and resistance-associated genes in 1071-MRPA exposed to meropenem, ciprofloxacin, and the MCC were monitored by quantitative PCR. The MCC was synergistic against 25% and 40.6% of MDR P. aeruginosa isolates as shown by the checkerboard and time-kill curves, respectively. The morphological and structural changes that resulted from the synergistic action of the MCC against 1071-MRPA were a summation of the effects observed with each antimicrobial alone. One exception included outer membrane vesicles, which were seen in a greater amount upon ciprofloxacin exposure but were significantly inhibited upon MCC exposure. Cell wall- and DNA repair-associated genes were differentially expressed in 1071-MRPA exposed to meropenem, ciprofloxacin, and the MCC. However, some of the RDA-detected, resistance-associated, and SOS response-associated genes were expressed at significantly lower levels in 1071-MRPA exposed to the MCC. The MCC may be an alternative for the treatment of MDR P. aeruginosa. The effect of this antimicrobial combination may be not only the result of a summation of the effects of meropenem and ciprofloxacin but also a result of differential action that likely inhibits protective mechanisms in the bacteria.


Assuntos
Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Genes Bacterianos/efeitos dos fármacos , Pseudomonas aeruginosa/genética , Tienamicinas/farmacologia , Brasil , Contagem de Colônia Microbiana , DNA Bacteriano/biossíntese , DNA Bacteriano/genética , Combinação de Medicamentos , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Meropeném , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/ultraestrutura , RNA Bacteriano/biossíntese , RNA Bacteriano/genética
17.
BMC Microbiol ; 14: 152, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24913205

RESUMO

BACKGROUND: Leishmania amazonensis infection results in diverse clinical manifestations: cutaneous, mucocutaneous or visceral leishmaniasis. The arsenal of drugs available for treating Leishmania infections is limited. Therefore, new, effective, and less toxic leishmaniasis treatments are still needed. We verified cell death in amastigote forms of Leishmania amazonensis induced by the sesquiterpene lactone parthenolide. RESULTS: The tested compound was able to concentration-dependently affect axenic and intracellular amastigotes, with IC50 values of 1.3 µM and 2.9 µM, respectively after 72 h incubation. No genotoxic effects were observed in a micronucleus test in mice. Parthenolide induced morphological and ultrastructural changes in axenic amastigotes, including a loss of membrane integrity, swelling of the mitochondrion, cytoplasmic vacuoles, and intense exocytic activity in the region of the flagellar pocket. These results led us to investigate the occurrence of autophagic vacuoles with monodansylcadaverine and the integrity of the plasma membrane and mitochondrial membrane potential using flow cytometry. In all of the tests, parthenolide had positive results. CONCLUSIONS: Our results indicate that the antileishmanial action of parthenolide is associated with autophagic vacuole appearance, a reduction of fluidity, a loss of membrane integrity, and mitochondrial dysfunction. Considering the limited repertoire of existing antileishmanial compounds, the products derived from medicinal plants has been one the greatest advances to help develop new chemotherapeutic approaches.


Assuntos
Antiprotozoários/farmacologia , Morte Celular , Leishmania mexicana/efeitos dos fármacos , Sesquiterpenos/farmacologia , Animais , Antiprotozoários/toxicidade , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Feminino , Concentração Inibidora 50 , Leishmania mexicana/citologia , Leishmania mexicana/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Sesquiterpenos/toxicidade
18.
BMC Microbiol ; 14: 236, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25253283

RESUMO

BACKGROUND: The treatment of leishmaniasis with pentavalent antimonials is problematic because of their toxicity. Investigations of potentially active molecules are important to discover less toxic drugs that are viable economic alternatives for the treatment of leishmaniasis. Thiosemicarbazones are a group of molecules that are known for their wide versatility and biological activity. In the present study, we examined the antileishmania activity, mechanism of action, and biochemical alterations produced by a novel molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-limonene against Leishmania amazonensis. RESULTS: BZTS inhibited the growth of the promastigote and axenic amastigote forms, with an IC50 of 3.8 and 8.0 µM, respectively. Intracellular amastigotes were inhibited by the compound with an IC50 of 7.7 µM. BZTS also had a CC50 of 88.8 µM for the macrophage strain J774A1. BZTS altered the shape, size, and ultrastructure of the parasites, including damage to mitochondria, reflected by extensive swelling and disorganization of the inner mitochondrial membrane, intense cytoplasmic vacuolization, and the presence of concentric membrane structures inside the organelle. Cytoplasmic lipid bodies, vesicles inside vacuoles in the flagellar pocket, and enlargement were also observed. BZTS did not induce alterations in the plasma membrane or increase annexin-V fluorescence intensity, indicating no phosphatidylserine exposure. However, it induced the production of mitochondrial superoxide anion radicals. CONCLUSIONS: The present results indicate that BZTS induced dramatic effects on the ultrastructure of L. amazonensis, which might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.


Assuntos
Antiprotozoários/farmacologia , Benzaldeídos/farmacologia , Cicloexenos/química , Leishmania mexicana/efeitos dos fármacos , Terpenos/química , Tiossemicarbazonas/farmacologia , Animais , Antiprotozoários/química , Antiprotozoários/isolamento & purificação , Benzaldeídos/isolamento & purificação , Morte Celular , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania mexicana/crescimento & desenvolvimento , Leishmania mexicana/ultraestrutura , Limoneno , Macrófagos/efeitos dos fármacos , Camundongos , Organelas/efeitos dos fármacos , Organelas/ultraestrutura , Testes de Sensibilidade Parasitária , Tiossemicarbazonas/isolamento & purificação
19.
Ann Clin Microbiol Antimicrob ; 13: 32, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25260038

RESUMO

BACKGROUND: Dermatophyte species infect the epidermis and appendages, often with serious social and health-economic consequences. The hydroalcoholic extract of pomegranate fruit peel showed activity against the dermatophyte fungi Trichophyton mentagrophytes, T. rubrum, Microsporum canis and M. gypseum. METHODS: Hydroalcoholic extract was prepared with pomegranate peels. This crude extract was fractionated and submitted to liquid-liquid partition, resulting in an active fraction which was fractionated in a Sephadex LH-20 column, followed by a Lobar column. The structure of the active compound was established with the use of spectroscopic methods. RESULTS: The crude extract of pomegranate fruit peel showed activity against the dermatophytes Trichophyton mentagrophytes, T. rubrum, Microsporum canis, and M. gypseum, with MICs values of 125 µg/ml and 250 µg/ml, respectively for each genus. Punicalagin was isolated and identified by spectroscopic analysis. The crude extract and punicalagin showed activity against the conidial and hyphal stages of the fungi. The cytotoxicity assay showed selectivity for fungal cells than for mammalian cells. CONCLUSIONS: These results indicated that the crude extract and punicalagin had a greater antifungal activity against T. rubrum, indicating that the pomegranate is a good target for study to obtain a new antidermatophyte medicine.


Assuntos
Antifúngicos/farmacologia , Arthrodermataceae/efeitos dos fármacos , Taninos Hidrolisáveis/farmacologia , Lythraceae/química , Extratos Vegetais/farmacologia , Trichophyton/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/isolamento & purificação , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Análise Espectral
20.
Mar Drugs ; 12(9): 4973-83, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25257785

RESUMO

Chagas' disease, a vector-transmitted infectious disease, is caused by the protozoa parasite Trypanosoma cruzi. Drugs that are currently available for the treatment of this disease are unsatisfactory, making the search for new chemotherapeutic agents a priority. We recently described the trypanocidal action of (-)-elatol, extracted from the macroalga Laurencia dendroidea. However, nothing has been described about the mechanism of action of this compound on amastigotes that are involved in the chronic phase of Chagas' disease. The goal of the present study was to evaluate the effect of (-)-elatol on the formation of superoxide anions (O2•-), DNA fragmentation, and autophagy in amastigotes of T. cruzi to elucidate the possible mechanism of the trypanocidal action of (-)-elatol. Treatment of the amastigotes with (-)-elatol increased the formation of O2•- at all concentrations of (-)-elatol assayed compared with untreated parasites. Increased fluorescence was observed in parasites treated with (-)-elatol, indicating DNA fragmentation and the formation of autophagic compartments. The results suggest that the trypanocidal action of (-)-elatol might involve the induction of the autophagic and apoptotic death pathways triggered by an imbalance of the parasite's redox metabolism.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Compostos de Espiro/farmacologia , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Fragmentação do DNA/efeitos dos fármacos , Laurencia/química , Macaca mulatta , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Superóxidos/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA