RESUMO
Doxorubicin (DOXO) is an antineoplastic drug that is used extensively in managing multiple cancer types. However, DOXO-induced cardiotoxicity is a limiting factor for its widespread use and considerably affects patients' quality of life. Farnesol (FSN) is a sesquiterpene with antioxidant, anti-inflammatory, and anti-tumor properties. Thus, the current study explored the cardioprotective effect of FSN against DOXO-induced cardiotoxicity. In this study, male Wistar rats were randomly divided into five groups (n = 7) and treated for 14 days. Group I (Control): normal saline, p.o. daily for 14 days; Group II (TOXIC): DOXO 2.4 mg/kg, i.p, thrice weekly for 14 days; Group III: FSN 100 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group IV: FSN 200 mg/kg, p.o. daily for 14 days + DOXO similar to Group II; Group V (Standard): nifedipine 10 mg/kg, p.o. daily for 14 days + DOXO similar to Group II. At the end of the study, animals were weighed, blood was collected, and heart-weight was measured. The cardiac tissue was used to estimate biochemical markers and for histopathological studies. The observed results revealed that the FSN-treated group rats showed decrease in heart weight and heart weight/body weight ratio, reversed the oxidative stress, cardiac-specific injury markers, proinflammatory and proapoptotic markers and histopathological aberrations towards normal, and showed cardioprotection. In summary, the FSN reduces cardiac injuries caused by DOXO via its antioxidant, anti-inflammatory, and anti-apoptotic potential. However, more detailed mechanism-based studies are needed to bring this drug into clinical use.
Assuntos
Farneseno Álcool , Qualidade de Vida , Masculino , Ratos , Animais , Ratos Wistar , Farneseno Álcool/farmacologia , Farneseno Álcool/uso terapêutico , Miócitos Cardíacos , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Doxorrubicina/farmacologia , Morte Celular , Estresse Oxidativo , Inflamação/metabolismo , Antioxidantes/metabolismoRESUMO
The 3-hydroxy 3-methylglutaryl coenzyme A reductase (HMG-CoA reductase) inhibitors known as "statins" are widely prescribed for the management of dyslipidemia. In spite of their muscle toxicity, use of statins has alarmingly increased worldwide. A recent report suggests that vitamin D (VD) levels are closely associated with lipid lowering activity and muscular toxicity of statins. However, data are limited and inconclusive. The present study was undertaken to investigate the effect of VD supplementation on the bioavailability and lipid lowering effect of simvastatin (ST). Adult Sprague-Dawley male rats (250 ± 10 g) were divided into four groups including control, ST (100 mg/kg/day), VD (100 µg/kg/day) and ST + VD group, respectively. After the dosing period of 8 days the animals were sacrificed and the blood was collected for the analysis of ST, its active metabolite simvastatin acid (STA), total cholesterol, triglyceride and liver enzymes including aspartate transaminase and alanine transaminase. The result of this study showed a significant decrease in the level of cholesterol and triglyceride in ST alone treated group, whereas VD alone failed to alter the blood lipid levels. Concomitant treatment with VD produced significant decrease in the bioavailability of ST and STA. However, there was no significant difference in the level of cholesterol in ST alone and in ST + VD treated group. Our results on the liver enzyme suggest that ST alone or in combination with VD does not produce any hepatotoxicity. Further studies using VD along with various statins for a longer duration are suggested.
Assuntos
Colecalciferol/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacocinética , Fígado/efeitos dos fármacos , Sinvastatina/administração & dosagem , Sinvastatina/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Biomarcadores/sangue , Biotransformação , Colesterol/sangue , Regulação para Baixo , Interações Medicamentosas , Fígado/metabolismo , Masculino , Ratos Sprague-Dawley , Medição de Risco , Sinvastatina/análogos & derivados , Sinvastatina/sangue , Triglicerídeos/sangueRESUMO
Aim: To develop paliperidone mucoadhesive-nanoemulsion (PLP-NE) to enhance brain bioavailability. To evaluate comparative effects of PLP-NE and CS-PLP-NE in the treatment of schizophrenia, followed by a toxicity study of opt-NE. Material and methods: Oil: oleic acid, surfactant: Tween-80, and co-surfactant: Labrasol were chosen based on the solubility and maximum nanoemulsion area. The ultrasonication technique was applied with the aqueous micro titration method for the development of PLP-NE. The optimization of the method for the excellent PLP-NE was performed using a central composite design based on a five-factor and four-level. Oil (% v/v), S mix (v/v%), ultrasonication intensity in percentage, ultrasonication time in minutes, and temperature (°C) were optimized and used to the independent variables. Results: The parameters i.e., oil (5%), S mix (10%), ultrasonication time (5.0 min), ultrasonication intensity (25%), and temperature (38 °C) were optimized and used as independent and dependent variables for the development of novel PLP-NE. Based on experimental data, the dependent variables, i.e., globule size (53.90 ± 4.01 nm), % transmittance (92.56% ± 1.06%), PDI (0.218 ± 0.007), and zeta potential (-11.60 ± 0.031 mV), were determined. The smooth near about spherical shaped of PLP-NE globules with, refractive index i.e., 1.62 ± 0.021, viscosity: 39 ± 6 cp with the pH: 7.40 ± 0.089, and content of drug (97.98 ± 0.39%) for optimized-PLP-NE. The optimized PLP-NE with oleic acid, Tween-80, and Labrasol was used to improve brain bioavailability with good permeation via the intranasal route. CS-PLP-NE yielded good mucoadhesive property results compared to paliperidone-nanoemulsion, and PLP-S containing a 0.751 minutes retention time with their deuterated-IS (0.806 min) and m/z of 427.2/207.2 with IS (m/z: 431.2/211.2) for PLP and PLP-IS. A calibration curve was plotted with a linear range of 1-2000 ng mL-1 with inter- and intraday accuracy (97.03-99.31%) and precision (1.69-50.05%). The results of AUC(0-24) and C max for PLP were found to be highly significant (p < 0.001) as an improvement of brain bioavailability in rats via intranasal delivery of CS-PLP-NE. Furthermore, the locomotion test, social interaction, and forced swimming test (forced swimming, climbing, and immobility) of a mucoadhesive CS-PLP-NE (intranasally) provided highly significant results with the improvement of behavioral analysis when compared to the PLP-NE and PLP-S studies. Conclusion: CS-PLP-NE (i.n.) showed highly significant results, i.e., p < 0.001 for the improvement of bioavailability of the brain in the treatment of schizophrenia. Optimized-mucoadhesive-CS-based-PLP-NE is safe and shows no toxicity.
RESUMO
BACKGROUND: The purpose of this research is to develop an analytical method and validate it according to ICH guidelines for the estimation of Toremifene by RP-HPLC-PDA with molecular docking and ADMET analysis. From molecular docking, it came to know the receptor affinity specifically to estrogen receptors (ERα and ERß), which are responsible for cancer therapy. ADMET analyses secure its therapeutic potential as well safety of the drug. METHODS: An isocratic method has developed by RP-HPLC-PDA (AGILENT 1100) with symmetry of 100 mm x 4.6 mm x 5 µm particle size C18 column and optimise mobile phase is methanol: 0.1% OPA (orthophosphoric acid) water ratio of 43:57% v/v. Under different conditions like acidic, alkaline, oxidative, and neutral environments, toremifene was tested for degradation. RESULTS: The developed method is validated in accordance with ICH guidelines. A calibration curve with an r2 value of 0.9987 has been prepared across the range of 10 to 50 µg/ml with five standard dilutions. The retention time of the drug is 5.575 minutes. The validation results are system suitability (%RSD-0.76), inter-day precision (%RSD 0.14-0.29), intraday precision (%RSD 0.08-0.34), accuracy (%RSD 0.16-0.96), and robustness (%RSD 0.16-0.35). In different intended conditions, four peaks are in 1 N HCl, two peaks in 1 N NaOH, three peaks in 10% H2O2 (1hr), and one peak in neutral. CONCLUSION: Toremifene, a Selective Estrogen Receptor Modulator (SERM), Drug pharmacokinetic properties and receptor binding affinity results are helpful in designing the analytical method. Developing the RP-HPLC-PDA method is found to be novel, simple and precise. It could be used for testing toremifene in bulk and pharmaceutical tablet dosage forms in quality control, as well as stability tests.
RESUMO
Objective: To enhance the brain bioavailability of S-allyl-l-cysteine (SC) by developing novel S-allyl-l-cysteine chitosan nanoparticles (SC CS NPs) and examining the quantity of SC by developing a novel method of ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) in ischemic rat brain treatment. Methods: The ionotropic gelation method was used to develop S-allyl cysteine-loaded CS NPs. The 4-factor, 5-level central composite design was optimized to determine the effect of independent variables, i.e., particle size, polydispersity index (PDI), zeta potential, EE, and loading capacity, together with their characterization, followed by drug release and intranasal permeation to enhance the brain bioavailability and examination of their neurobehavioral and biochemical parameters with their histopathological examination. Results: SC CS NPs were optimized at the particle size of 93.21 ± 3.31 nm (PDI: 0.317 ± 0.003), zeta potential of 44.4 ± 2.93, and drug loading of 41.23 ± 1.97% with an entrapment efficiency of 82.61 ± 4.93% having sustain and controlled release (79.92 ± 3.86%) with great permeation (>80.0%) of SC. SC showed the retention time of 1.021 min and 162.50/73.05 m/z. SC showed good linearity in the range of 5.0-1300.0 ng mL-1, % inter-and-intraday accuracy of 96.00-99.06% and CV of 4.38-4.38%. We observed significant results, i.e., p < 0.001 for improved (AUC)0-24 and Cmax delivered via i.v. and i.n. dose. We also observed the highly significantly observations of SC CS NPs (i.n.) based on their treatment results for the biochemical, neurobehavioral, and histopathological examination in the developed ischemic MCAO brain rat model. Conclusion: The excellent significant role of mucoadhesive CS NPs of SC was proven based on the enhancement in the brain bioavailability of SC via i.n. delivery in rats and easy targeting of the brain for ischemic brain treatment followed by an improvement in neuroprotection based on a very small dose of SC.
RESUMO
Background: Epilepsy is a neurological disorder characterized by anomalous brain activity, convulsions, and odd behavior. Several substituted-(naphthalen-2-yl)-3-(1H-indol-3-yl) allyl)-1,4-dihydropyridine-4-carboxylic acid derivatives (5a-j) were intended to be produced in the current research effort to reduce convulsions and seizures. Materials and Methods: The newly developed compounds were produced by the prescribed process. Numerous methods (infrared spectroscopy (IR), nuclear magnetic resonance (NMR), mass, elemental analysis, etc.) were used to characterize these substances. Several models were used to test each of these molecules for anticonvulsant activity. By using the rotarod and ethanol potentiation techniques, neurotoxicity was also evaluated. The study meticulously examined each parameter and showed absorption, distribution, metabolism, and excretion (ADME) predictions for each of the 10 congeners that were produced. In addition, studies on molecular docking employed the gamma amino butyric acid (GABA)-A target protein. Results: Anticonvulsant screening results identified compounds 5f, 5h, 5d, and 5b as the most efficacious of the series. All synthesized equivalents largely passed the neurotoxicity test. The results of molecular docking revealed significant interactions at the active site of GABA-A with LEU B: 99, TYR A: 62, Ala A: 174, and THR B: 202, and the outcomes were good and in agreement with in vivo findings. Conclusions: The study's findings showed that some substances had promising anticonvulsant properties that were comparable to those of the standard drug. The highly active novel anticonvulsant analogs may therefore represent a possible lead, and additional studies may result in a potential new drug candidate.
RESUMO
There are many different infections and factors that can lead to skin illnesses, but bacteria and fungi are the most frequent. The goal of this study was to develop a hexatriacontane-loaded transethosome (HTC-TES) for treating skin conditions caused by microbes. The HTC-TES was developed utilizing the rotary evaporator technique, and Box-Behnken design (BBD) was utilized to improve it. The responses chosen were particle size (nm) (Y1), polydispersity index (PDI) (Y2), and entrapment efficiency (Y3), while the independent variables chosen were lipoid (mg) (A), ethanol (%) (B), and sodium cholate (mg) (C). The optimized TES formulation with code F1, which contains lipoid (mg) (A) 90, ethanol (%) (B) 25, and sodium cholate (mg) (C) 10, was chosen. Furthermore, the generated HTC-TES was used for research on confocal laser scanning microscopy (CLSM), dermatokinetics, and in vitro HTC release. The results of the study reveal that the ideal formulation of the HTC-loaded TES had the following characteristics: 183.9 nm, 0.262 mV, -26.61 mV, and 87.79% particle size, PDI, and entrapment efficiency, respectively. An in vitro study on HTC release found that the rates of HTC release for HTC-TES and conventional HTC suspension were 74.67 ± 0.22 and 38.75 ± 0.23, respectively. The release of hexatriacontane from TES fit the Higuchi model the best, and the Korsmeyer-Peppas model indicates the release of HTC followed a non-Fickian diffusion. By having a higher negative value for cohesiveness, the produced gel formulation demonstrated its stiffness, whereas good spreadability indicated better gel application to the surface. In a dermatokinetics study, it was discovered that TES gel considerably increased HTC transport in the epidermal layers (p < 0.05) when compared to HTC conventional formulation gel (HTC-CFG). The CLSM of rat skin treated with the rhodamine B-loaded TES formulation demonstrated a deeper penetration of 30.0 µm in comparison to the hydroalcoholic rhodamine B solution (0.15 µm). The HTC-loaded transethosome was determined to be an effective inhibitor of pathogenic bacterial growth (S. aureus and E. coli) at a concentration of 10 mg/mL. It was discovered that both pathogenic strains were susceptible to free HTC. According to the findings, HTC-TES gel can be employed to enhance therapeutic outcomes through antimicrobial activity.
RESUMO
The main objective of the proposed work was the development of a thermosensitive gel (containing clove and tea tree oil) for the management of vaginal candidiasis. Both oils have been recommended to be used separately in a topical formulation for vaginal candidiasis. Incorporating two natural ingredients (clove and tea tree oil) into a product give it a broad antimicrobial spectrum and analgesic properties. The two oils were mixed together at a 3:1 ratio and converted into o/w nanoemulsion using the aqueous titration method and plotting pseudo ternary phase diagrams. Further transformations resulted in a gel with thermosensitive properties. To determine the final formulation's potential for further clinical investigation, in vitro analyses (viscosity measurement, MTT assay, mucoadhesion, ex vivo permeation) and in vivo studies (fungal clearance kinetics in an animal model) were conducted. The current effort leveraged the potential of tea tree and clove oils as formulation ingredients and natural therapeutic agents for vaginal infections. Its synergy generated a stable and effective thermosensitive gel that can be utilized for recurrent candidiasis and other infections.
RESUMO
One of the leading causes of death worldwide is cancer, which poses substantial risks to both society and an individual's life. Cancer therapy is still challenging, despite developments in the field and continued research into cancer prevention. The search for novel anticancer active agents with a broader cytotoxicity range is therefore continuously ongoing. The benzene ring gets fused to a pyridine ring at two carbon atoms close to one another to form the double ring structure of the heterocyclic aromatic nitrogen molecule known as quinoline (1-azanaphthalene). Quinoline derivatives contain a wide range of pharmacological activities, including antitubercular, antifungal, antibacterial, and antimalarial properties. Quinoline derivatives have also been shown to have anticancer properties. There are many quinoline derivatives widely available as anticancer drugs that act via a variety of mechanisms on various molecular targets, such as inhibition of topoisomerase, inhibition of tyrosine kinases, inhibition of heat shock protein 90 (Hsp90), inhibition of histone deacetylases (HDACs), inhibition of cell cycle arrest and apoptosis, and inhibition of tubulin polymerization.
RESUMO
5-Fluorouracil (5-FU) is a drug of choice for colorectal-cancer. But oral therapeutic efficacy of 5-FU is restricted due to their very little bioavailability because of poor membrane permeability and GIT-absorption. We have developed a multiple nanoemulsion (w/o/w i.e. 5-FU-MNE) in which 5-FU incorporated to improve their oral-absorption. Globule-size of opt-5-FU-MNE was 51.64⯱â¯2.61â¯nm with PDI and ZP 0.101⯱â¯0.001 and -5.59⯱â¯0.94, respectively. In vitro 5-FU-release and ex vivo permeation studies exhibited 99.71% release and 83.64% of 5-FU from opt-nanoformulation. Cytotoxic in vitro studies-exhibited that 5-FU in opt-5-FU-MNE was 5-times more potent than 5-FU-S on human-colon-cancer-cell-lines (HT-29). The enhanced Cmax with AUC0-8h with opt-5-FU-MNE was shown extremely significant (pâ¯<â¯0.001) in wistar rat's plasma in the comparison of oral and i.v. treated group of 5-FU-S by PK-observations. Furthermore, opt-5-FU-MNE was showed much more significant (p < 0.001) results as compared to 5-FU-S (free) on cell lines for human colon cancer (HT-29).
RESUMO
A wide-range, specific, and precise liquid chromatography tandem mass spectrometric (LC-MS/MS)technique for quantifying fluoxetine (FLX) in human plasma was developed using the RapidTrace® automated solid-phase extraction (SPE) method; the analyte and internal standard (IS) were extricated on Oasis MCX SPE cartridges. Acetonitrile and 5 mM ammonium formate buffer (90:10 v/v) were used as mobile phase to achieve chromatographic separation on the reverse phase (C18 column). The analyte and IS were ionized using +ve electrospray ionization approach which was further traced by multiple-reaction monitoring on a tandem mass spectrometer. To quantify the FLX and FLX-d5, the parent-to-daughter ion transition of m/z of 310.0/44.1 and 315.0/44.0 was used, respectively. The method demonstrated a linear active limit of 0.20-30 ng/ml with recoveries ranging from 63.04% to 79.39% for quality control samples and 61.25% for IS samples. The concentrations over the calibration range demonstrated acceptable precision and accuracy. Due to the high inconsistency of the FLX concentration data, the minimum threshold of the assay was kept at 0.20 ng/ml. The flow rate was maintained at 500 µL/min, and the time for sample analysis for each injection was 3.5 min. The method was found to be specific, sensitive, and faster with minimum utilization of organic solvents and was utilized further for metabolic and pharmacokinetic studies.
RESUMO
Rivaroxaban, indicated for the treatment of atrial fibrillation, deep vein thrombosis, pulmonary embolism, and coronary or peripheral artery disease, is one of the most frequently used direct oral anticoagulants. Therapeutic drug monitoring [TDM] is essential to minimize bleeding and thrombosis during personalized rivaroxaban treatment. An efficient and reliable analytical technique is required to quatify the rivaroxaban during its therapeutic indication. Dried blood spots (DBSs) sampling is a convenient bioanalytical method with minimal invasive blood drawing, long-term stability, and low shipment and storage costs. Therfore, DBS sampling technique is growing rapidly for TDM of drugs in medical care. This study developed an ultra high performance liquid chromatography-tandem mass spectrometry method of quantitating rivaroxaban in DBSs samples using the isotopic labeled analog (rivaroxaban-d4) as an internal standard (IS). Rivaroxaban and IS were separated on an Acquity HILIC column and eluted with a mobile-phase composition of acetonitrile and 20 mM ammonium acetate in the ratio of 95:5 at a flow rate of 0.3 mL/min. The precursor-to-product ion transitions of 436.03 Ë 144.9 for rivaroxaban and 440.04 Ë 144.9 for IS were used to quantify in multiple reaction monitoring mode. The method was accurate and precise in the 2.06-1000 ng/mL calibration range without hematocrit and blood spot volume effects. Rivaroxaban was stable in DBSs samples under different anticipated storage and temperature conditions. We observed good correlation between the plasma concentration and the DBSs concentration, indicating that the proposed DBSs method is suitable for monitoring the rivaroxaban concentration using a simple and convenient sample collection procedure.
Assuntos
Rivaroxabana , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Teste em Amostras de Sangue Seco , Monitoramento de Medicamentos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: The diseases tuberculosis, triggered by intracellular pathogens, is a major problem for the global medical professionals. Treatments for these diseases through conventional dosage form consist of long-term therapy with multiple drugs, leading to several side effects and contribute to low patient compliance and drug resistance. The pathogens are found to be situated in the intracellular compartments of the cells, which ultimately results in additional blockades to effective treatment. Therefore, improved and more efficient therapies for such intracellular diseases are required. METHODS: This review discusses the potential of nanomedicine and related patents to improve intracellular disease chemotherapy. To complete the objective, we searched bibliographic databases of indexed literature using a focused and structured criteria. The quality and characteristics of selected papers were assessed using standard parameters with qualitative analysis having a conceptual framework. RESULTS: Nanoparticle-based drug delivery systems are suitable for the treatment of illnesses, such as tuberculosis. Due to the unique size-dependent properties, nanocarriers such as nanoparticles, liposomes, niosomes and microspheres offer the opportunity to develop new therapeutic and diagnostic tools. The ability to integrate drugs into nanosystems displays a new standard in pharmacotherapy that could be used for cell-targeted drug therapy. Experimental data showed the possibility of intermittent chemotherapy with main antituberculosis drugs by employing nanocarriers. Besides the advantage of the controlled release of medications in organs, the other benefits of the nanocarriers include the possibility of various routes of therapy, reduction in drug dosage and adverse effects, reduced possibility of drug interactions, and drug-resistant targeting. Published literature including patented studies suggests that nanomedicine mediated drug delivery may improve tuberculosis chemotherapy by offering benefits such as targeting to the specific organs, sustained and controlled drug release, tuberculosis diagnosis, drug delivery to the pathogen's intracellular location, and tuberculosis vaccine development. CONCLUSION: The properties of nanomedicine may prove beneficial in developing improved, efficacious or alternative therapies for tuberculosis diseases.
Assuntos
Antituberculosos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Nanoestruturas/administração & dosagem , Tuberculose/tratamento farmacológico , Antituberculosos/uso terapêutico , Portadores de Fármacos/uso terapêutico , Humanos , Nanoestruturas/uso terapêuticoRESUMO
BACKGROUND: Tuberculosis (TB), which is caused by the Mycobacterium tuberculosis, is a serious threat and one of the major health problems worldwide. OBJECTIVE: In recent years, an estimated of 9.6 million TB cases occurred and 1.5 million death occurred due to TB worldwide. CONCLUSION: The present review is an attempt to introduce this disease focusing on the pathophysiology of the disease, the current approaches and the related patents for treatment and the future planning for combating this disease.
Assuntos
Antituberculosos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Tuberculose/tratamento farmacológico , Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos/tendências , Previsões , Humanos , Nanomedicina/tendências , Tuberculose Pulmonar/tratamento farmacológicoRESUMO
The use of liposomes in biological and medicinal sciences is a relatively new approach. The liposomal strategy greatly depends on the technological advancement in the formation of vesicles of various sizes and properties. In the current study, we encapsulated the venoms obtained from medically important scorpions such as Androctonus bicolor (AB), Androctonus crassicauda (AC), and Leiurus quinquestriatus (LQ). To begin with, our first and foremost aim was to prepare biocompatible and biodegradable nanovesicles. Additionally, we intended to enhance the anti-cancer potential of these encapsulated venoms. The liposomal venoms were prepared by rehydration and dehydration methods. Morphology, particle size, and size distribution of the liposomes were examined by scanning electron microscope (SEM), transmission electron microscope (TEM), and Zetasizer. We found that the prepared liposomes had a smooth surface and a spherical/ovoid shape and existed mainly as single unilamellar vesicles (SUVs). Furthermore, the liposomal formulation of all three venoms exhibited excellent stability and good encapsulation efficiency (EE). Additionally, the anti-cancer potential of the encapsulated venoms was also evaluated on a colorectal cancer cell line (HCT-8). The venom-loaded liposomes showed elevated anti-cancer properties such as low rate of cell survival, higher reactive oxygen species (ROS) generation, and enhancement in the number of apoptotic cells. In addition to this, cell cycle analysis revealed G0/G1 enrichment upon venom treatment. The effect of treatment was more pronounced when venom-liposome was used as compared to free venom on the HCT-8 cell line. Furthermore, we did not observe any interference of liposomal lipids used in these preparations on the progression of cancer cells. Considering these findings, we can conclude that the encapsulated scorpion venoms exhibit better efficacy and act more vigorously as an anti-cancer agent on the colorectal cancer cell line when compared with their free counterpart.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Venenos de Escorpião/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/patologia , Liberação Controlada de Fármacos , Humanos , Lipossomos , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Venenos de Escorpião/farmacologia , EscorpiõesRESUMO
Simvastatin (STT), a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, is widely prescribed for dyslipidemia, whereas fluoxetine (FLX) is the first-choice drug for the treatment of depression and anxiety. A recent report suggests that selective serotonin reuptake inhibitors can interact with the cytochrome P450 3A4 substrate, and another one suggests that STT enhances the antidepressant activity of FLX. However, the data are inconclusive. The present study was designed to explore the pharmacokinetic and pharmacodynamic consequences of coadministration of STT and FLX in experimental animals. For this, Wistar rats weighing 250±10 g were divided into four groups, including control, STT (40 mg/kg/day), FLX (20 mg/kg/day), and STT+FLX group, respectively. After the dosing period of 4 weeks, the animals were sacrificed, and the blood and brain samples were collected for the analysis of STT, simvastatin acid (STA), FLX, total cholesterol, triglyceride, high-density lipoprotein (HDL), 5-hydroxytryptamine, dopamine, and hydroxy indole acetic acid. It was found that the coadministration resulted in a significant increase in the bioavailability of STT in the plasma (41.8%) and brain (68.7%) compared to administration of STT alone (p<0.05). The maximum drug concentration (Cmax) of STT was also found to be increased significantly in the plasma and brain compared to that achieved after monotherapy (p<0.05). However, STT failed to improve the pharmacokinetics of FLX up to a significant level. The results of this study showed that the combined regimen significantly reduced the level of cholesterol and triglyceride and increased the level of HDL when compared to STT monotherapy. Furthermore, the coadministration of STT with FLX led to an elevated level of neurotransmitters in the brain (p<0.05). FLX increased the concentration of STT in the plasma and brain. The coadministration of these drugs also led to an improved lipid profile. However, in the long-term, this interaction may have a vital clinical importance because the increase in STT level may lead to life-threatening side effects associated with statins.
RESUMO
The adequate amount of drug delivery to the brain in neurological patients is a major problem faced by the physicians. Recent studies suggested that intranasal administration of liposomal formulation may improve the drug delivery to the brain. In the present study, an attempt was made to study the brain bioavailability of commonly used anti-Alzheimer drug donepezil (DNP) liposomal formulation by intranasal route in rats. We adopted the thin layer hydration technique for the preparation of liposomes by using cholesterol, polyethylene glycol, and 1,2-distearyl-sn-glycero-3-phosphocholine (DSPC). The prepared liposomes were characterized by determining particle size, shape, surface morphology, zeta potential, encapsulation efficiency, and in vitro release of DNP. The pharmacokinetic parameters of liposomal DNP in plasma and brain of rats were determined following oral and nasal administration. The results of this study showed that the DNP liposomal formulation was stable with a consistent size (102 ± 3.3 nm) and shape. The prepared liposomes showed high encapsulation efficiency (84.91% ±3 .31%) and sustained-release behavior. The bioavailability of DNP in plasma and brain increased significantly (P<0.05) after administration of liposomal formulation by the intranasal route. Histopathological examination showed that the formulation was safe and free from toxicity. It can be concluded that the nasal administration of liposomal preparation may provide an efficient and reliable mode of drug delivery to the central nervous system.
Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Indanos/administração & dosagem , Nootrópicos/administração & dosagem , Piperidinas/administração & dosagem , Administração Intranasal , Administração Oral , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Química Farmacêutica , Colesterol/química , Preparações de Ação Retardada , Donepezila , Indanos/farmacocinética , Lipossomos , Masculino , Nootrópicos/farmacocinética , Tamanho da Partícula , Fosfatidilcolinas/química , Piperidinas/farmacocinética , Polietilenoglicóis/química , Ratos , Ratos Wistar , Distribuição TecidualRESUMO
Transdermal drug delivery represents one of the most rapidly advancing areas of novel drug delivery. Although the concept of transdermal drug delivery has been known since 1924, it took until 1979, as FDA approved the transdermal delivery of scopolamine, that transdermal delivery systems [TDDS] received broad attention as novel tool for controlled release. These drug delivery systems are designed for controlled release of drug through the skin into systemic circulation maintaining consistent efficacy and reducing dose of the drug and its related side effects. More than 200 patents have been granted by the United State patent alone, of which more than 35 TDD products have now been approved for sale in the US, and approximately 16 active ingredients have been approved for use globally. Statistics reveal a market of $ 12.7 billion in the year 2005 which is expected to increase by $ 21.5 billion in the year 2010 and $ 31.5 billion in the year 2015. Almost all major and minor pharmaceutical companies are developing TDDS. There is not a single review article which describes patents on different types of TDDS. Thus this review is designed for patents on the different type of TDDS which would be helpful for the researcher in the field of TDDS.
Assuntos
Sistemas de Liberação de Medicamentos/métodos , Patentes como Assunto , Preparações Farmacêuticas/administração & dosagem , Tecnologia Farmacêutica/métodos , Administração Cutânea , Química Farmacêutica , Preparações de Ação Retardada , Humanos , Absorção CutâneaRESUMO
Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hyperglycemia caused by defective insulin secretion, resistance to insulin action, or a combination of both. DM has reached epidemic proportions in the US and more recently worldwide. The morbidity and mortality associated with diabetes is anticipated to account for a substantial proportion of health care expenditures. Although there are several drug treatments currently available, the need for new herbal agents for treatment of diabetes are required. The treatment goals for patients with diabetes have evolved significantly over the last 80 years, from preventing imminent mortality, to alleviating symptoms, to the now recognized objective of normalization or near normalization of glucose levels with the intent of forestalling diabetic complications. The present review stated several findings from an extensive literature search of natural plants that have been assessed for the anti diabetic activity over past 80 years. An attempt has been made to summarize the information in order to highlight those chemical entities and plant species which are of worthy for further investigation as leads to the drug developments. Over 100 plant species from wide range of families containing various chemical classes of compounds have been cited here which are worthy for the researchers and the industrialist concerned to diabetes.