Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834199

RESUMO

Recently, nonwoven fabrics from natural silk have attracted considerable attention for biomedical and cosmetic applications because of their good mechanical properties and cytocompatibility. Although these fabrics can be easily fabricated using the binding character of sericin, the high cost of silk material may restrict its industrial use in certain areas. In this study, sericin was added as a binder to a cheaper material (wool) to prepare wool-based nonwoven fabrics and investigate the effect of the amount of sericin added on the structural characteristics and properties of the wool nonwoven fabric. It was found using SEM that sericin coated the surface of wool fibers and filled the space between them. With an increase in sericin addition, the porosity, moisture regain, and the contact angle of the sericin-coated wool nonwoven fabric decreased. The maximum stress and initial Young's modulus of the nonwoven fabric increased with the increase in sericin amount up to 32.5%, and decreased with a further increase in the amount of sericin. Elongation at the end steadily decreased with the increase in sericin addition. All of the nonwoven fabrics showed good cytocompatibility, which increased with the amount of sericin added. These results indicate that sericin-coated wool-based nonwoven fabrics may be successfully prepared by adding sericin to wool fibers, and that the properties of these fabrics may be diversely controlled by altering the amount of sericin added, making them promising candidates for biomedical and cosmetic applications.


Assuntos
Sericinas , Animais , Sericinas/química , Fibra de Lã , , Têxteis , Seda/química
2.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511244

RESUMO

In this study, five different nonwoven silk fabrics were fabricated with silk fibers from different cocoon layers, and the effect of the cocoon layer on the structural characteristics and properties of the nonwoven silk fabric was examined. The diameter of the silk fiber and thickness of the nonwoven silk fabric decreased from the outer to the inner cocoon layer. More amino acids with higher hydrophilicity (serine, aspartic acid, and glutamic acid) and lower hydrophilicity (glycine and alanine) were observed in the outer layers. From the outer to the inner layer, the overall crystallinity and contact angle of the nonwoven silk fabric increased, whereas its yellowness index, moisture retention, and mechanical properties decreased. Regardless of the cocoon layer at which the fiber was sourced, the thermal stability of fibroin and sericin and good cell viability remained unchanged. The results of this study indicate that the properties of nonwoven silk fabric can be controlled by choosing silk fibers from the appropriate cocoon layers. Moreover, the findings in this study will increase the applicability of nonwoven silk fabric in the biomedical and cosmetic fields, which require specific properties for industrialization.


Assuntos
Bombyx , Fibroínas , Sericinas , Animais , Seda/química , Têxteis , Fibroínas/química , Sericinas/química , Sobrevivência Celular , Bombyx/química
3.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902396

RESUMO

Silk has attracted the attention of researchers as a biomedical and cosmetic material because of its good biocompatibility and cytocompatibility. Silk is produced from the cocoons of silkworms, which have various strains. In this study, silkworm cocoons and silk fibroins (SFs) were obtained from ten silkworm strains, and their structural characteristics and properties were examined. The morphological structure of the cocoons depended on the silkworm strains. The degumming ratio of silk ranged from 22.8% to 28% depending on the silkworm strains. The highest and lowest solution viscosities of SF were shown by 9671 and 9153, respectively, showing a 12-fold difference. The silkworm strains of 9671, KJ5, and I-NOVI showed a two-fold higher work of ruptures for the regenerated SF film than 181 and 2203, indicating that the silkworm strains considerably influence the mechanical properties of the regenerated SF film. Regardless of the silkworm strain, all silkworm cocoons showed good cell viability, making them suitable candidates for advanced functional biomaterials.


Assuntos
Bombyx , Fibroínas , Animais , Bombyx/química , Fibroínas/química , Seda/química , Materiais Biocompatíveis , Viscosidade
4.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35886857

RESUMO

Silk is a naturally occurring material and has been widely used in biomedical and cosmetic applications owing to its unique properties, including blood compatibility, excellent cytocompatibility, and a low inflammatory response in the body. A natural silk nonwoven fabric with good mechanical properties was recently developed using the binding property of sericin. In this study, silk/rayon composite nonwoven fabrics were developed to increase productivity and decrease production costs, and the effect of the silk/rayon composition on the structure and properties of the fabric was examined. The crystalline structure of silk and rayon was maintained in the fabric. As the silk content increased, the porosity and moisture regain of the silk/rayon web and nonwoven fabric decreased. As the silk content increased, the maximum stress of the web and nonwoven fabric increased, and the elongation decreased. Furthermore, the silk/rayon web exhibited the highest values of maximum stress and elongation at ~200 °C. Regardless of the silk/rayon composition, all silk/rayon nonwoven fabrics showed good cytocompatibility. Thus, the silk/rayon fabric is a promising material for cosmetic and biomedical applications owing to its diverse properties and high cell viability.


Assuntos
Sericinas , Seda , Celulose , Sericinas/química , Seda/química , Têxteis
5.
Int J Mol Sci ; 23(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36232641

RESUMO

Due to their commendable biocompatibility, regenerated silk fibroin (RSF) films have attracted considerable research interest. However, the poor mechanical properties of RSF films have limited their use in various biomedical applications. In this study, a novel, highly crystalline silk fibril was successfully extracted from silk by combining degumming with ultrasonication. Ultrasonication accelerated the development of silk nanofibrils measuring 130-200 nm on the surface of the over-degummed silk fibers, which was confirmed via scanning electron microscopy. Additionally, the crystallinity index of silk fibril was found to be significantly higher (~68%) than that of conventionally degummed silk (~54%), as confirmed by the Fourier-transform infrared (FTIR) spectroscopy results. Furthermore, the breaking strength and elongation of the RSF film were increased 1.6 fold and 3.4 fold, respectively, following the addition of 15% silk nanofibrils. Thus, the mechanical properties of the RSF film were remarkably improved by the addition of the silk nanofibrils, implying that it can be used as an excellent reinforcing material for RSF films.


Assuntos
Fibroínas , Seda , Fibroínas/química , Seda/química , Espectroscopia de Infravermelho com Transformada de Fourier
6.
Polymers (Basel) ; 15(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37631462

RESUMO

Silk sericin has garnered the attention of researchers as a promising biomaterial because of its good biocompatibility and high water retention. However, despite its useful properties, the poor storage stability of sericin has restricted its extensive use in biorelated applications. This study extracted sericin from silkworm cocoon, dried and stored it as a solid, and then dissolved it in hot water conditions to improve the storage stability of sericin for its use. The dissolution behavior of the extracted sericin solids was examined in conjunction with the structural characteristics and properties of dissolved sericin. Consequently, the results of solution viscosity, gel strength, crystallinity index, and thermal decomposition temperature indicated that the molecular weight (MW) of the dissolved sericin remained constant until a dissolution time of 5 min, following which deterioration was observed. The optimum condition of dissolution of the extracted sericin solid was 5 min at 90 °C. Conclusively, the extracted sericin could be stored in a dry state and dissolved to prepare redissolved sericin aqueous solution with the same MW as extracted sericin, thereby improving the storage stability of the sericin aqueous solution.

7.
Biomolecules ; 13(8)2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627251

RESUMO

Recently, natural silk nonwoven fabrics have attracted attention in biomedical and cosmetic applications because of their excellent biocompatibility, mechanical properties, and easy preparation. Herein, silk nonwoven fabrics were prepared by carding silk filaments to improve their productivity, and the effect of sericin content on the structure and properties of silk nonwoven fabrics was investigated. Owing to the binding effect of sericin in silk, a natural silk nonwoven fabric was successfully prepared through carding, wetting, and hot press treatments. Sericin content affected the structural characteristics and properties of the silk nonwoven fabrics. As the sericin content increased, the silk nonwoven fabrics became more compact with reduced porosity and thickness. Further, with increasing sericin content, the crystallinity and elongation of the silk nonwoven fabrics decreased while the moisture regain and the maximum stress increased. The thermal stability of most silk nonwoven fabrics was not affected by the sericin content. However, silk nonwoven fabrics without sericin had a lower thermal decomposition temperature than other nonwoven fabrics. Regardless of the sericin content, all silk nonwoven fabrics exhibited optimal cell viability and are promising candidates for cosmetic and biomedical applications.


Assuntos
Sericinas , Têxteis , Seda , Sobrevivência Celular , Citoesqueleto
8.
Int J Mol Sci ; 13(3): 3738-3750, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22489179

RESUMO

The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.


Assuntos
Antioxidantes/farmacologia , Hipoglicemiantes/farmacologia , Derivados da Hipromelose/farmacologia , Metilcelulose/análogos & derivados , Aumento de Peso/efeitos dos fármacos , Animais , Antioxidantes/administração & dosagem , Glicemia/efeitos dos fármacos , Dieta Hiperlipídica , Suplementos Nutricionais , Glucose/metabolismo , Glicogênio/sangue , Hipoglicemiantes/administração & dosagem , Derivados da Hipromelose/administração & dosagem , Insulina/sangue , Resistência à Insulina , Metabolismo dos Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Metilcelulose/administração & dosagem , Metilcelulose/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos
9.
Polymers (Basel) ; 13(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34372082

RESUMO

Recently, the electrospun silk web has been intensively studied in terms of its biomedical applications, including tissue engineering scaffolds, due to its good biocompatibility, cytocompatibility, and biodegradability. In this study, the effect of relative humidity (RH) conditions on the morphology of electrospun silk fiber and the electrospinning production rate of silk solution was examined. In addition, the effect of RH on the molecular conformation of electrospun silk web was examined using Fourier transform infrared (FTIR) spectroscopy. As RH was increased, the maximum electrospinning rate of silk solution and fiber diameter of the resultant electrospun silk web were decreased. When RH was increased to 60%, some beads were observed, which showed that the electrospinnability of silk formic acid solution deteriorated with an increase in RH. The FTIR results showed that electrospun silk web was partially ß-sheet crystallized and RH did not affect the molecular conformation of silk.

10.
Polymers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069044

RESUMO

In this study, natural silk web and natural silk non-woven fabric were prepared mechanically using the binding character of the sericin in silk. The effect of process variables on the preparation, structure, and properties of the silk web and the non-woven fabric was examined. The reeling velocity affected the morphology and mechanical properties of the web but had almost no influence on the crystalline structure of the silk. From the viewpoint of reel-ability and the mechanical properties (work of rupture) of silk web, a reeling velocity of 39.2 m/min represented the optimal processing velocity. The porosity and swelling ratio of the silk web decreased slightly with increasing reeling velocity. Furthermore, the reeling bath temperature had a significant effect on the reel-ability of silk filaments from a silkworm cocoon. Bath temperatures ≥50 °C yielded good reel-ability (>900 m reeling length). The porosity, swelling ratio in water, and mechanical properties of the silk web and silk non-woven fabric changed only slightly with the reeling bath temperature but changed significantly with the hot press treatment. The hot-pressed silk web (i.e., silk non-woven fabric) exhibited higher tensile strength as well as lower elongation at break, porosity, and swelling ratio than the silk web.

11.
Int J Biol Macromol ; 106: 1166-1172, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28847607

RESUMO

Owing to the excellent biocompatibility of silk fibroins (SFs) and ease of fabrication of nano-fibrous webs by the electro-spinning technique, electro-spun SF webs have attracted the attention of researchers for various biomedical applications, including their use as tissue engineering scaffolds and membranes for guided bone regeneration. In this work, the effect of the molecular weight (MW) and concentration of SFs on the structure and properties of the electro-spun SF webs was examined. The fiber morphology and porosity of these SF webs were strongly affected by the viscosity of the SF dope solution. It was found that the electro-spinning rate of the SF solution could be increased significantly (7.5 fold) by controlling the MW and concentration of the SF. Interestingly, as the SF MW and concentration (i.e., s​olution viscosity) increased, the extent of ß-sheet crystallization of the SF decreased, leading to a decrease in the overall crystallinity. The strength and elongation of the electro-spun SF web decreased with an increase in the web porosity (i.e., increasing SF concentration) and a decrease in the MW of the SF.


Assuntos
Regeneração Óssea/efeitos dos fármacos , Fibroínas/química , Nanofibras/química , Seda/química , Animais , Bombyx/química , Membranas Artificiais , Peso Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual/métodos , Viscosidade
12.
Int J Biol Macromol ; 106: 39-47, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28774806

RESUMO

Electro-spun regenerated silk webs have been extensively studied for biomedical applications because of the simplicity of their fabrication methods However, the productivity of the electro-spinning process is low for web fabrication and the mechanical properties of the electro-spun silk web are not satisfactory, which restricts its commercialization. In this study, a new silk non-woven fabric was successfully fabricated by wetting and hot press treatments using the excellent binding characteristic of sericin. The effects of the press temperature and residual sericin content on the preparation, structure, and properties of the silk non-woven fabric were examined. A press temperature of 200°C was optimum for obtaining non-woven fabrics with best mechanical properties, without yellowing. The silk non-woven fabric could not be fabricated without sericin, and a minimum of 8% sericin was required to fabricate it. As the sericin content was increased, the strength and Young's modulus of the silk non-woven fabric increased, while the tensile elongation remained constant. Regardless of the press temperature and sericin content, all the silk non-woven fabrics showed good cell viability, comparable to that of the tissue culture plate (TCP) used as a control until 4days, which however decreased compared to that of TCP after 7days.


Assuntos
Sericinas/química , Têxteis/análise , Alicerces Teciduais , Animais , Bombyx , Sobrevivência Celular/efeitos dos fármacos , Módulo de Elasticidade , Temperatura Alta , Teste de Materiais , Camundongos , Células NIH 3T3 , Pressão , Sericinas/isolamento & purificação , Sericinas/farmacologia , Engenharia Tecidual
13.
Int J Biol Macromol ; 119: 821-832, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30081122

RESUMO

In this study, the effect of the MW on the structure and properties of sericin film, sponge, and gel was examined. As the MW of sericin increased, the gelation of the sericin aqueous solution was found to be accelerated, and the gel strength, and the gel-sol transition temperature increased. Irrespective of the casting solvent (water and formic acid) and form of sericin (gel, film, or sponge), the crystallization of the sericins was accelerated. The mechanical properties of the sericin sponge were remarkably improved upon increasing the MW of sericin. The MW of sericin almost did not have an effect on the cell toxicity. As the MW of sericin is increased, the sericin sponge becomes denser and its porosity is reduced, leading to a decrease in the swelling ratio. These results indicate that various characteristics of the sericin forms can be modulated by controlling the MW of sericin, with enhanced potential for biomedical and cosmetic applications.


Assuntos
Géis/química , Sericinas/química , Seda/química , Tampões de Gaze Cirúrgicos , Fenômenos Mecânicos , Estrutura Molecular , Peso Molecular , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Difração de Raios X
14.
Int J Biol Macromol ; 95: 8-13, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27840220

RESUMO

Owing to the excellent cyto-compatibility of silk fibroin (SF) and the simple fabrication of nano-fibrous webs, electro-spun SF webs have attracted much research attention in numerous biomedical fields. Because the production rate of electro-spun webs is strongly dependent on the electro-spinning rate used, the electro-spinning rate becomes more important. In the present study, to improve the electro-spinning rate of SF solutions, various electric fields were applied during electro-spinning of SF, and its effects on the maximum electro-spinning rate of SF solution as well as diameters and molecular conformations of the electro-spun SF fibers were examined. As the electric field was increased, the maximum electro-spinning rate of the SF solution also increased. The maximum electro-spinning rate of a 13% SF solution could be increased 12×by increasing the electric field from 0.5kV/cm (0.25mL/h) to 2.5kV/cm (3.0mL/h). The dependence of the fiber diameter on the present electric field was not significant when using less-concentrated SF solutions (7-9% SF). On the other hand, at higher SF concentrations the electric field had a greater effect on the resulting fiber diameter. The electric field had a minimal effect of the molecular conformation and crystallinity index of the electro-spun SF webs.


Assuntos
Eletricidade , Fibroínas/química , Conformação Proteica , Reologia , Soluções
15.
Int J Biol Macromol ; 104(Pt A): 294-302, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28601646

RESUMO

In the present study, the effects of different degumming methods on the structural characteristics and properties of regenerated silk fibroin (SF) were examined. The crystallinity index of the degummed silk increased with the degumming ratio. The crystallinity index at any given degumming ratio differed depending on the degumming method. The soda method and the soap/soda method using sodium carbonate resulted in a higher crystallinity index than the other methods The degumming method strongly affects the molecular weight (MW) and solution viscosity of the regenerated SF. The MW and viscosity of the regenerated SF, according to the degumming method, was in the order of urea method>HTHP method≈acid method>soap/soda method≈soda method. The turbidity of a silk formic acid solution decreased as a result of increasing the degumming ratio and was a minimum at a degumming ratio of around 26%. However, it was not affected by the degumming method. The mechanical properties of a regenerated SF film were strongly affected by the degumming method and the trend in the strength and elongation with the various degumming methods was the same as that of the MW and viscosity of the regenerated SF.


Assuntos
Fibroínas/química , Concentração de Íons de Hidrogênio , Fenômenos Mecânicos , Peso Molecular , Pressão , Temperatura , Ureia/química
16.
Int J Biol Macromol ; 89: 273-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27126168

RESUMO

Regenerated silk film has been increasingly attracting the research community's attention for biomedical applications due to its good biocompatibility and excellent cyto-compatibility. However, some limitations regarding its mechanical properties, such as brittleness, have restricted the use of silk films for industrial biomedical applications. In this study, regenerated silk films with different residual sericin content were prepared applying controlled degumming conditions to evaluate the effect of sericin content on the structure and properties of the films generated. When the residual sericin content increased to 0.6%, crystallinity index and breaking strength of silk films were increased. Above this value, these parameters then decreased. A 1.5 fold increase of silk film elongation properties was obtained when incorporating 16% sericin. Regardless of sericin content, all regenerated silk films showed excellent cyto-compatibility, comparable to the one obtained with tissue culture plates.


Assuntos
Sericinas/química , Seda/química , Animais , Bombyx , Carbonatos/química , Sobrevivência Celular/efeitos dos fármacos , Elasticidade , Dureza , Teste de Materiais , Camundongos , Células NIH 3T3 , Ácido Oleico/química , Conformação Proteica , Sericinas/ultraestrutura , Seda/farmacologia , Seda/ultraestrutura
17.
Int J Biol Macromol ; 78: 287-95, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25869308

RESUMO

Sericin films have attracted much attention from researchers in biomedical and cosmetic fields because of its unique properties, including good cytocompatibility and its promotion of wound healing. However, poor mechanical properties of sericin films have restricted its application in these fields. In this study, a new solvent, formic acid, was used to fabricate sericin solutions and films. The effects of formic acid on the structural characteristics and mechanical properties of the sericin solutions and films were examined and compared with water. The sericin/formic acid solution showed fewer aggregated sericin molecules, resulting in a lower turbidity than that of the sericin/water solution. In addition, the gelation of the sericin solution was retarded in formic acid compared to that of water. Sericin films cast from the formic acid solution exhibited a much higher crystallinity index than that produced from water. The tensile strength and elongation of the sericin films cast from the formic acid solution were more than double that of the sericin films cast from water. It is expected that the more stable sericin solution and high-crystallinity sericin films, which have significantly improved mechanical properties, produced by using formic acid as the solvent could be utilized in biomedical and cosmetic applications.


Assuntos
Sericinas/química , Soluções/química , Solventes/química , Formiatos , Fenômenos Mecânicos , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Viscosidade , Água , Difração de Raios X
18.
Int J Biol Macromol ; 81: 936-41, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26407900

RESUMO

Owing to unique properties, including the wound healing effect, sericin gel and films have attracted significant attention in the biomedical and cosmetic fields. The structural characteristics and properties of sericin gels and films are especially important owing to their effect on the performance of sericin in biomedical and cosmetic applications. In the present study, the effect of temperature on the gelation behavior, gel disruption, and sol-gel transition of sericin was examined using rheometry. In addition, the effect of the drying temperature on the structural characteristics of the sericin film was determined via Fourier transform infrared (FTIR) spectroscopy. The strength of the sericin gel increased and the gelation process was prolonged with decreasing storage temperatures. FTIR and differential scanning calorimetry (DSC) results also revealed that the crystallinity and the thermal decomposition temperature of the sericin film increased with decreasing drying temperature. The sericin gels were disrupted at a storage time of 40min when they were stored at temperatures higher than 50°C, and the corresponding gel strength decreased with increasing temperature. Furthermore, the thermo-reversible nature of gel-sol transition of sericin was confirmed by rheological and FTIR measurements.


Assuntos
Dessecação , Géis/química , Sericinas/química , Temperatura , Animais , Varredura Diferencial de Calorimetria , Cristalização , Transição de Fase , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
19.
Maxillofac Plast Reconstr Surg ; 37(1): 32, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26709373

RESUMO

BACKGROUND: The aims of present study were (1) to evaluate new bone formation among the 4-hexylresorcinol (4HR)-incorporated silk fabric membrane (SFM), conventional SFM, and uncovered control groups and (2) to compare the amount of residual membrane between the 4HR-incorporated SFM and conventional SFM in a rabbit parietal defect model. METHODS: Nine New Zealand white rabbits were used for this animal study. After the formation of a bilateral parietal bone defect (diameter 8.0 mm), either 4HR-incorporated SFM or conventional SFM was grafted into the defect. The defect in the control was left uncovered. New bone formation and the amount of residual membrane were evaluated by histomorphometry at 8 weeks after the operation. RESULTS: The total amount of new bone was 37.84 ± 8.30 % in the control, 56.64 ± 15.74 % in the 4HR-incorporated SFM group, and 53.35 ± 10.52 % in the conventional SFM group 8 weeks after the operation. The differences were significant between the control and 4HR-incorporated SFM group (P = 0.016) and between the control and conventional SFM group (P = 0.040). The residual membrane was 75.08 ± 10.52 % in the 4HR-incorporated SFM group and 92.23 ± 5.46 % in the conventional SFM group 8 weeks after the operation. The difference was significant (P = 0.039). CONCLUSIONS: The 4HR-incorporated SFM and conventional SFM groups showed more bone regeneration than the control group. The incorporated 4HR accelerated the partial degradation of the silk fabric membrane in a rabbit parietal defect model 8 weeks after the operation.

20.
Int J Biol Macromol ; 79: 988-95, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26027609

RESUMO

Silk fibroin (SF) is known to be a biocompatible material, and different forms of SF are used for various applications. However, the application of SF in particle form is rarely reported, compared to other forms. In this study, SF microparticles with a diameter of approximately 250 µm were prepared by the electrospray method, using 1 M LiCl/DMSO as a solvent. The dissolution time of SF in the CaCl2/CH3CH2OH/H2O solution and the concentration of the SF dope solution affected the final morphology of the microparticles. A long dissolution time and a low SF concentration led to the formation of irregular microparticles, but a short dissolution time and a high concentration produced sphere-like microparticles. The shear viscosity of the SF dope solution was the main parameter that affected the morphology of the SF microparticles. Regardless of the dissolution time in the CaCl2/CH3CH2OH/H2O solution and the concentration of the SF dope solution, the shear viscosity of the dope solution must be higher than 0.33 Pa s to produce sphere-like microparticles. Finally, cell adhesion experiments demonstrated that these SF microparticles show potential for use as cell carriers.


Assuntos
Materiais Biocompatíveis/química , Fibroínas/química , Nanopartículas/química , Seda/química , Animais , Materiais Biocompatíveis/farmacologia , Bombyx/química , Adesão Celular/efeitos dos fármacos , Fibroínas/farmacologia , Seda/farmacologia , Soluções/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA