Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Immunol ; 46(3): 701-11, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26576501

RESUMO

Pentraxin-3 (PTX3), an acute-phase protein released during inflammation, aids phagocytic clearance of pathogens and apoptotic cells, and plays diverse immunoregulatory roles in tissue injury. In neuroinflammatory diseases, like MS, resident microglia could become activated by endogenous agonists for Toll like receptors (TLRs). Previously we showed a strong TLR2-mediated induction of PTX3 in cultured human microglia and macrophages by HspB5, which accumulates in glia during MS. Given the anti-inflammatory effects of HspB5, we examined the contribution of PTX3 to these effects in MS and its animal model EAE. Our data indicate that TLR engagement effectively induces PTX3 expression in human microglia, and that such expression is readily detectable in MS lesions. Enhanced PTX3 expression is prominently expressed in microglia in preactive MS lesions, and in microglia/macrophages engaged in myelin phagocytosis in actively demyelinating lesions. Yet, we did not detect PTX3 in cerebrospinal fluid of MS patients. PTX3 expression is also elevated in spinal cords during chronic relapsing EAE in Biozzi ABH mice, but the EAE severity and time course in PTX3-deficient mice did not differ from WT mice. Moreover, systemic PTX3 administration did not alter the disease onset or severity. Our findings reveal local functions of PTX3 during neuroinflammation in facilitating myelin phagocytosis, but do not point to a role for PTX3 in controlling the development of autoimmune neuroinflammation.


Assuntos
Encéfalo/imunologia , Proteína C-Reativa/administração & dosagem , Proteína C-Reativa/genética , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Componente Amiloide P Sérico/administração & dosagem , Componente Amiloide P Sérico/genética , Coluna Vertebral/imunologia , Animais , Encéfalo/patologia , Proteína C-Reativa/líquido cefalorraquidiano , Proteína C-Reativa/imunologia , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Biozzi , Microglia/imunologia , Esclerose Múltipla/patologia , Bainha de Mielina/metabolismo , Fagocitose , Componente Amiloide P Sérico/líquido cefalorraquidiano , Componente Amiloide P Sérico/imunologia , Coluna Vertebral/patologia , Receptores Toll-Like/imunologia , Regulação para Cima
2.
J Neuroinflammation ; 10: 118, 2013 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-24053384

RESUMO

BACKGROUND: Autoimmunity to neuronal proteins occurs in several neurological syndromes, where cellular and humoral responses are directed to surface as well as intracellular antigens. Similar to myelin autoimmunity, pathogenic immune response to neuroaxonal components such as neurofilaments may contribute to neurodegeneration in multiple sclerosis. METHODS: We studied the immune response to the axonal protein neurofilament light (NF-L) in the experimental autoimmune encephalomyelitis animal model of multiple sclerosis. To examine the association between T cells and axonal damage, pathology studies were performed on NF-L immunized mice. The interaction of T cells and axons was analyzed by confocal microscopy of central nervous system tissues and T-cell and antibody responses to immunodominant epitopes identified in ABH (H2-Ag7) and SJL/J (H2-As) mice. These epitopes, algorithm-predicted peptides and encephalitogenic motifs within NF-L were screened for encephalitogenicity. RESULTS: Confocal microscopy revealed both CD4+ and CD8+ T cells alongside damaged axons in the lesions of NF-L immunized mice. CD4+ T cells dominated the areas of axonal injury in the dorsal column of spastic mice in which the expression of granzyme B and perforin was detected. Identified NF-L epitopes induced mild neurological signs similar to the observed with the NF-L protein, yet distinct from those characteristic of neurological disease induced with myelin oligodendrocyte glycoprotein. CONCLUSIONS: Our data suggest that CD4+ T cells are associated with spasticity, axonal damage and neurodegeneration in NF-L immunized mice. In addition, defined T-cell epitopes in the NF-L protein might be involved in the pathogenesis of the disease.


Assuntos
Autoantígenos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Proteínas de Neurofilamentos/imunologia , Medula Espinal/imunologia , Medula Espinal/patologia , Animais , Encefalomielite Autoimune Experimental/patologia , Ensaio de Imunoadsorção Enzimática , Epitopos de Linfócito T/imunologia , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Microscopia Confocal , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T
3.
Acta Neuropathol Commun ; 6(1): 43, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855358

RESUMO

Misfolding and aggregation of tau protein are closely associated with the onset and progression of Alzheimer's Disease (AD). By interrogating IgG+ memory B cells from asymptomatic donors with tau peptides, we have identified two somatically mutated VH5-51/VL4-1 antibodies. One of these, CBTAU-27.1, binds to the aggregation motif in the R3 repeat domain and blocks the aggregation of tau into paired helical filaments (PHFs) by sequestering monomeric tau. The other, CBTAU-28.1, binds to the N-terminal insert region and inhibits the spreading of tau seeds and mediates the uptake of tau aggregates into microglia by binding PHFs. Crystal structures revealed that the combination of VH5-51 and VL4-1 recognizes a common Pro-Xn-Lys motif driven by germline-encoded hotspot interactions while the specificity and thereby functionality of the antibodies are defined by the CDR3 regions. Affinity improvement led to improvement in functionality, identifying their epitopes as new targets for therapy and prevention of AD.


Assuntos
Linfócitos B/metabolismo , Imunoglobulina G/farmacologia , Cadeias Pesadas de Imunoglobulinas/metabolismo , Cadeias Leves de Imunoglobulina/metabolismo , Proteínas tau/imunologia , Proteínas tau/metabolismo , Adolescente , Adulto , Idoso , Especificidade de Anticorpos , Linfócitos B/efeitos dos fármacos , Cristalização , Relação Dose-Resposta a Droga , Feminino , Humanos , Epitopos Imunodominantes/metabolismo , Masculino , Microglia/metabolismo , Microscopia de Força Atômica , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Agregados Proteicos , Adulto Jovem
4.
Acta Neuropathol Commun ; 3: 87, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26694816

RESUMO

INTRODUCTION: The important protective role of small heat-shock proteins (HSPs) in regulating cellular survival and migration, counteracting protein aggregation, preventing apoptosis, and regulating inflammation in the central nervous system is now well-recognized. Yet, their role in the neuroinflammatory disorder multiple sclerosis (MS) is largely undocumented. With the exception of alpha B-crystallin (HSPB5), little is known about the roles of small HSPs in disease. RESULTS: Here, we examined the expression of four small HSPs during lesion development in MS, focussing on their cellular distribution, and regional differences between white matter (WM) and grey matter (GM). It is well known that MS lesions in these areas differ markedly in their pathology, with substantially more intense blood-brain barrier damage, leukocyte infiltration and microglial activation typifying WM but not GM lesions. We analysed transcript levels and protein distribution profiles for HSPB1, HSPB6, HSPB8 and HSPB11 in MS lesions at different stages, comparing them with normal-appearing brain tissue from MS patients and non-neurological controls. During active stages of demyelination in WM, and especially the centre of chronic active MS lesions, we found significantly increased expression of HSPB1, HSPB6 and HSPB8, but not HSPB11. When induced, small HSPs were exclusively found in astrocytes but not in oligodendrocytes, microglia or neurons. Surprisingly, while the numbers of astrocytes displaying high expression of small HSPs were markedly increased in actively demyelinating lesions in WM, no such induction was observed in GM lesions. This difference was particularly obvious in leukocortical lesions covering both WM and GM areas. CONCLUSIONS: Since induction of small HSPs in astrocytes is apparently a secondary response to damage, their differential expression between WM and GM likely reflects differences in mediators that accompany demyelination in either WM or GM during MS. Our findings also suggest that during MS, cortical structures fail to benefit from the protective actions of small HSPs.


Assuntos
Regulação da Expressão Gênica/fisiologia , Substância Cinzenta/metabolismo , Proteínas de Choque Térmico Pequenas/metabolismo , Esclerose Múltipla/patologia , Substância Branca/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Sistema Nervoso Central/patologia , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Antígenos HLA-DR/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/metabolismo , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas
5.
J Neuropathol Exp Neurol ; 74(1): 48-63, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25470347

RESUMO

Similar to macrophages, microglia adopt diverse activation states and contribute to repair and tissue damage in multiple sclerosis. Using reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, we show that in vitro M1-polarized (proinflammatory) human adult microglia express the distinctive markers CD74, CD40, CD86, and CCR7, whereas M2 (anti-inflammatory) microglia express mannose receptor and the anti-inflammatory cytokine CCL22. The expression of these markers was assessed in clusters of activated microglia in normal-appearing white matter (preactive lesions) and areas of remyelination, representing reparative multiple sclerosis lesions. We show that activated microglia in preactive and remyelinating lesions express CD74, CD40, CD86, and the M2 markers CCL22 and CD209, but not mannose receptor. To examine whether this intermediate microglia profile is static or dynamic and thus susceptible to changes in the microenvironment, we polarized microglia into M1 or M2 phenotype in vitro and then subsequently treated them with the opposing polarization regimen. These studies revealed that expression of CD40, CXCL10, and mannose receptor is dynamic and that microglia, like macrophages, can switch between M1 and M2 phenotypic profiles. Taken together, our data define the differential activation states of microglia during lesion development in multiple sclerosis-affected CNS tissues and underscore the plasticity of human adult microglia in vitro.


Assuntos
Encéfalo/patologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Microglia/patologia , Esclerose Múltipla/patologia , Proteína Proteolipídica de Mielina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Feminino , Citometria de Fluxo , Humanos , Macrófagos/patologia , Masculino , Microglia/metabolismo , Pessoa de Meia-Idade , Proteína Proteolipídica de Mielina/genética , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA