Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232953

RESUMO

Bariatric surgery has been recognized as the safest and most effective procedure for controlling type 2 diabetes (T2D) and obesity in carefully selected patients. The aim of the present study was to compare the effects of Sleeve Gastrectomy (SG) and Single Anastomosis Duodenoileal Bypass with SG (SADI-S) on the metabolic profile of diet-induced obese rats. A total of 35 four-week-old male Wistar rats were submitted to surgical interventions (sham operation, SG and SADI-S) after 4 months of being fed a high-fat diet. Body weight, metabolic profile and the expression of molecules involved in the control of subcutaneous white (SCWAT), brown (BAT) and beige (BeAT) adipose tissue function were analyzed. SADI-S surgery was associated with significantly decreased amounts of total fat pads (p < 0.001) as well as better control of lipid and glucose metabolism compared to the SG counterparts. An improved expression of molecules involved in fat browning in SCWAT and in the control of BAT and BeAT differentiation and function was observed following SADI-S. Together, our findings provide evidence that the enhanced metabolic improvement and their continued durability after SADI-S compared to SG rely, at least in part, on the improvement of the BeAT phenotype and function.


Assuntos
Diabetes Mellitus Tipo 2 , Obesidade Mórbida , Tecido Adiposo/cirurgia , Anastomose Cirúrgica/efeitos adversos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/cirurgia , Dieta , Gastrectomia/métodos , Glucose , Íleo , Lipídeos , Masculino , Obesidade/complicações , Obesidade/cirurgia , Obesidade Mórbida/cirurgia , Ratos , Ratos Wistar , Estudos Retrospectivos
2.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445187

RESUMO

OBJECTIVE: The protein microfibril-associated glycoprotein (MAGP)-1 constitutes a crucial extracellular matrix protein. We aimed to determine its impact on visceral adipose tissue (VAT) remodelling during obesity-associated colon cancer (CC). METHODS: Samples obtained from 79 subjects (29 normoponderal (NP) (17 with CC) and 50 patients with obesity (OB) (19 with CC)) were used in the study. Circulating concentrations of MAGP-1 and its gene expression levels (MFAP2) in VAT were analysed. The impact of inflammation-related factors and adipocyte-conditioned media (ACM) on MFAP2 mRNA levels in colon adenocarcinoma HT-29 cells were further analysed. The effects of MAGP-1 in the expression of genes involved in the extracellular matrix (ECM) remodelling and tumorigenesis in HT-29 cells was also explored. RESULTS: Obesity (p < 0.01) and CC (p < 0.001) significantly decreased MFAP2 gene expression levels in VAT whereas an opposite trend in TGFB1 mRNA levels was observed. Increased mRNA levels of MFAP2 after the stimulation of HT-29 cells with lipopolysaccharide (LPS) (p < 0.01) and interleukin (IL)-4 (p < 0.01) together with a downregulation (p < 0.05) after hypoxia mimicked by CoCl2 treatment was observed. MAGP-1 treatment significantly enhanced the mRNA levels of the ECM-remodelling genes collagen type 6 α3 chain (COL6A3) (p < 0.05), decorin (DCN) (p < 0.01), osteopontin (SPP1) (p < 0.05) and TGFB1 (p < 0.05). Furthermore, MAGP-1 significantly reduced (p < 0.05) the gene expression levels of prostaglandin-endoperoxide synthase 2 (COX2/PTGS2), a key gene controlling cell proliferation, growth and adhesion in CC. Interestingly, a significant decrease (p < 0.01) in the mRNA levels of MFAP2 in HT-29 cells preincubated with ACM from volunteers with obesity compared with control media was observed. Conclusion: The decreased levels of MAGP-1 in patients with obesity and CC together with its capacity to modulate key genes involved in ECM remodelling and tumorigenesis suggest MAGP-1 as a link between AT excess and obesity-associated CC development.


Assuntos
Neoplasias do Colo/sangue , Obesidade/sangue , Fatores de Processamento de RNA/sangue , Idoso , Carcinogênese/genética , Neoplasias do Colo/genética , Matriz Extracelular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HT29 , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/genética , Fatores de Processamento de RNA/genética
3.
Eur J Clin Invest ; 48(9): e12997, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29995306

RESUMO

Obesity, a worldwide epidemic, confers increased risk for multiple serious conditions, including type 2 diabetes, cardiovascular diseases, nonalcoholic fatty liver disease and cancer. Adipose tissue is considered one of the largest endocrine organs in the body as well as an active tissue for cellular reactions and metabolic homeostasis rather than an inert tissue for energy storage. The functional pleiotropism of adipose tissue relies on its ability to synthesize and release a large number of hormones, cytokines, extracellular matrix proteins and growth and vasoactive factors, collectively termed adipokines that influence a variety of physiological and pathophysiological processes. In the obese state, excessive visceral fat accumulation causes adipose tissue dysfunctionality that strongly contributes to the onset of obesity-related comorbidities. The mechanisms underlying adipose tissue dysfunction include adipocyte hypertrophy and hyperplasia, increased inflammation, impaired extracellular matrix remodelling and fibrosis together with an altered secretion of adipokines. This review describes how adipose tissue becomes inflamed in obesity and summarizes key players and molecular mechanisms involved in adipose inflammation.


Assuntos
Adipocinas/imunologia , Inflamação/imunologia , Gordura Intra-Abdominal/imunologia , Obesidade/imunologia , Adipocinas/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Humanos , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Obesidade/metabolismo
5.
Lancet ; 392(10161): 2239-2240, 2018 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-30293772
6.
J Physiol Biochem ; 80(1): 149-160, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37935948

RESUMO

Bariatric surgery has become a recognized and effective procedure for treating obesity and type 2 diabetes (T2D). Our objective was to directly compare the caloric intake-independent effects of sleeve gastrectomy (SG) and single anastomosis duodenoileal bypass with SG (SADI-S) on glucose tolerance in rats with diet-induced obesity (DIO) and to elucidate the differences between bariatric surgery and caloric restriction.A total of 120 adult male Wistar rats with DIO and insulin resistance were randomly assigned to surgical (sham operation, SG, and SADI-S) and dietary (pair-feeding the amount of food eaten by animals undergoing the SG or SADI-S surgeries) interventions. Body weight and food intake were weekly monitored, and 6 weeks after interventions, fasting plasma glucose, oral glucose and insulin tolerance tests, plasma insulin, adiponectin, GIP, GLP-1, and ghrelin levels were determined.The body weight of SADI-S rats was significantly (p < 0.001) lower as compared to the sham-operated, SG, and pair-fed groups. Furthermore, SADI-S rats exhibited decreased whole body fat mass (p < 0.001), lower food efficiency rates (p < 0.001), and increased insulin sensitivity, as well as improved glucose and lipid metabolism compared to that of the SG and pair-fed rats.SADI-S was more effective than SG, or caloric restriction, in improving glycemic control and metabolic profile, with a higher remission of insulin resistance as well as long-term weight loss.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Obesidade Mórbida , Ratos , Masculino , Animais , Ratos Wistar , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/cirurgia , Controle Glicêmico , Obesidade/etiologia , Obesidade/cirurgia , Obesidade/metabolismo , Anastomose Cirúrgica/métodos , Gastrectomia/métodos , Insulina , Dieta , Glucose
7.
Acta Biomater ; 141: 264-279, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35007786

RESUMO

Biomechanical properties of adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. Bariatric surgery (BS) constitutes the most effective option for a sustained weight loss in addition to improving obesity-associated metabolic diseases including type 2 diabetes (T2D). We aimed to determine the impact of weight loss achieved by BS and caloric restriction (CR) on the biomechanical properties of AT. BS but not CR changed the biomechanical properties of epididymal white AT (EWAT) from a diet-induced obesity rat model, which were associated with metabolic improvements. We found decreased gene expression levels of collagens and Lox together with increased elastin and Mmps mRNA levels in EWAT after BS, which were also associated with the biomechanical properties. Moreover, an increased blood vessel density was observed in EWAT after surgery, confirmed by an upregulation of Acta2 and Antxr1 gene expression levels, which was also correlated with the biomechanical properties. Visceral AT from patients with obesity showed increased stiffness after tensile tests compared to the EWAT from the animal model. This study uncovers new insights into EWAT adaptation after BS with decreased collagen crosslink and synthesis as well as an increased degradation together with enhanced blood vessel density providing, simultaneously, higher stiffness and more ductility. STATEMENT OF SIGNIFICANCE: Biomechanical properties of the adipose tissue (AT) are closely involved in the development of obesity-associated comorbidities. In this study, we show for the first time that biomechanical properties of AT determined by E, UTS and strain at UTS are decreased in obesity, being increased after bariatric surgery by the promotion of ECM remodelling and neovascularization. Moreover, these changes in biomechanical properties are associated with improvements in metabolic homeostasis. Consistently, a better characterization of the plasticity and biomechanical properties of the AT after bariatric surgery opens up a new field for the development of innovative strategies for the reduction of fibrosis and inflammation in AT as well as to better understand obesity and its associated comorbidities.


Assuntos
Cirurgia Bariátrica , Diabetes Mellitus Tipo 2 , Tecido Adiposo/metabolismo , Animais , Colágeno/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/cirurgia , Matriz Extracelular/metabolismo , Humanos , Proteínas dos Microfilamentos/metabolismo , Obesidade/cirurgia , Ratos , Receptores de Superfície Celular/metabolismo , Redução de Peso
8.
Nutrients ; 14(20)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36297056

RESUMO

Netrin (NTN)-1 exhibits pro- and anti-inflammatory roles in different settings, playing important roles in the obesity-associated low-grade chronic inflammation. We aimed to determine the impact of NTN-1 on obesity and obesity-associated type 2 diabetes, as well as its role in visceral adipose tissue (VAT) inflammation. A total of 91 subjects were enrolled in this case-control study. Circulating levels of NTN-1 and its receptor neogenin (NEO)-1 were determined before and after weight loss achieved by caloric restriction and bariatric surgery. mRNA levels of NTN1 and NEO1 were assessed in human VAT, liver, and peripheral blood mononuclear cells. In vitro studies in human visceral adipocytes and human monocytic leukemia cells (THP-1)-derived macrophages were performed to analyze the impact of inflammation-related mediators on the gene expression levels of NTN1 and its receptor NEO1 as well as the effect of NTN-1 on inflammation. Increased (p < 0.001) circulating concentrations of NTN-1 in obesity decreased (p < 0.05) after diet-induced weight loss being also associated with a reduction in glucose (p < 0.01) and insulin levels (p < 0.05). Gene expression levels of NTN1 and NEO1 were upregulated (p < 0.05) in the VAT from patients with obesity with the highest expression in the stromovascular fraction cells compared with mature adipocytes (p < 0.01). NTN1 expression levels were enhanced (p < 0.01) under hypoxia and by inflammatory factors in both adipocytes and macrophages. Adipocyte-conditioned media strongly upregulated (p < 0.001) the mRNA levels of NTN1 in macrophages. The treatment of adipocytes with NTN-1 promoted the upregulation (p < 0.05) of pro-inflammatory and chemotactic molecules as well as its receptor NEO1. Collectively, these findings suggest that NTN-1 regulates VAT chronic inflammation and insulin resistance in obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Insulinas , Netrina-1 , Obesidade , Humanos , Tecido Adiposo/metabolismo , Estudos de Casos e Controles , Meios de Cultivo Condicionados , Glucose/metabolismo , Inflamação/metabolismo , Insulinas/metabolismo , Gordura Intra-Abdominal/metabolismo , Leucócitos Mononucleares/metabolismo , Netrina-1/metabolismo , Obesidade/metabolismo , RNA Mensageiro/genética , Redução de Peso
9.
Cell Mol Immunol ; 18(4): 1045-1057, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31551515

RESUMO

The NLRP3-IL-1ß pathway plays an important role in adipose tissue (AT)-induced inflammation and the development of obesity-associated comorbidities. We aimed to determine the impact of NLRP3 on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and extracellular matrix (ECM) remodeling. Samples obtained from 98 subjects were used in a case-control study. The expression of different components of the inflammasome as well as their main effectors and inflammation- and ECM remodeling-related genes were analyzed. The impact of blocking NLRP3 using siRNA in lipopolysaccharide (LPS)-mediated inflammation and ECM remodeling signaling pathways was evaluated. We demonstrated that obesity (P < 0.01), obesity-associated T2D (P < 0.01) and NAFLD (P < 0.05) increased the expression of different components of the inflammasome as well as the expression and release of IL-1ß and IL-18 in AT. We also found that obese patients with T2D exhibited increased (P < 0.05) hepatic gene expression levels of NLRP3, IL1B and IL18. We showed that NLRP3, but not NLRP1, is regulated by inflammation and hypoxia in visceral adipocytes. We revealed that the inhibition of NLRP3 in human visceral adipocytes significantly blocked (P < 0.01) LPS-induced inflammation by downregulating the mRNA levels of CCL2, IL1B, IL6, IL8, S100A8, S100A9, TLR4 and TNF as well as inhibiting (P < 0.01) the secretion of IL1-ß into the culture medium. Furthermore, blocking NLRP3 attenuated (P < 0.01) the LPS-induced expression of important molecules involved in AT fibrosis (COL1A1, COL4A3, COL6A3 and MMP2). These novel findings provide evidence that blocking the expression of NLRP3 reduces AT inflammation with significant fibrosis attenuation.


Assuntos
Tecido Adiposo/imunologia , Diabetes Mellitus Tipo 2/imunologia , Matriz Extracelular/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/complicações , Transdução de Sinais , Adulto Jovem
10.
J Inflamm Res ; 14: 6431-6446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880645

RESUMO

BACKGROUND: Inflammasomes maintain tissue homeostasis and their altered regulation in the colon, and the adipose tissue (AT) leads to chronic activation of inflammatory pathways promoting colon cancer (CC) development. We aimed to analyze the potential involvement of inflammasomes in obesity-associated CC. METHODS: Ninety-nine volunteers [61 with obesity (OB) and 38 normoponderal (NP)] further subclassified according to the approved protocol for the diagnosis of CC (58 without CC and 41 with CC) were included in the case-control study. RESULTS: CC (P<0.01) and obesity (P<0.01) were accompanied by increased mRNA levels of NLRP3, NLRP6, ASC, IL1B and NOD2 in VAT. Contrarily, patients with CC exhibited a downregulation of NLRP6 and IL18 in their colon. Additionally, we revealed that the decreased Nlrp1 (P<0.05), Nlrp3 (P<0.01) and Nlrp6 (P<0.01) mRNA levels in the colon from obese rats significantly increase (P<0.05) after caloric restriction. Adipocyte-conditioned media obtained from subjects with obesity reduced (P<0.01) the mRNA of NLRP3 as well as molecules involved in maintaining the intestinal integrity (MUC2, CLDN1 and TJP1) and the anti-inflammatory factors FGF21, KLF4, and IL33 and in HT-29 cells. We also found that the knockdown of NLRP6 in HT-29 cells significantly upregulated (P<0.05) the mRNA of NLRP1 and NLRP3 and inhibited (P<0.05) the expression levels of MUC2. Finally, we showed that the incubation of HT-29 with Akkermansia muciniphila influence (P<0.05) the inflammasome expression profile as well as intestinal integrity-related genes and aberrant inflammation. CONCLUSIONS: These findings provide evidence that the downregulated levels of NLRP6 and IL18 in the colon from patients with CC may be responsible for a reduced intestinal-barrier integrity, triggering local inflammation, which in turn acts on the dysfunctional AT in obesity, increasing the expression of different inflammasome components and flaring up a vicious cycle of uncontrollable inflammatory cascades that favours a pro-tumorigenic microenvironment.

11.
J Clin Med ; 9(4)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283761

RESUMO

Compelling evidence suggests that dermatopontin (DPT) regulates collagen and fibronectin fibril formation, the induction of cell adhesion and the prompting of wound healing. We aimed to evaluate the role of DPT on obesity and its associated metabolic alterations as well as its impact in visceral adipose tissue (VAT) inflammation and extracellular matrix (ECM) remodelling. Samples obtained from 54 subjects were used in a case-control study. Circulating and VAT expression levels of DPT as well as key ECM remodelling- and inflammation-related genes were analysed. The effect of pro- and anti-inflammatory mediators on the transcript levels of DPT in visceral adipocytes was explored. The impact of DPT on ECM remodelling and inflammation pathways was also evaluated in cultured adipocytes. We show that obesity and obesity-associated type 2 diabetes (T2D) increased (p < 0.05) circulating levels of DPT. In this line, DPT mRNA in VAT was increased (p < 0.05) in obese patients with and without T2D. Gene expression levels of DPT were enhanced (p < 0.05) in human visceral adipocytes after the treatment with lipopolysaccharide, tumour growth factor (TGF)- and palmitic acid, whereas a downregulation (p < 0.05) was detected after the stimulation with interleukin (IL)-4 and IL-13, critical cytokines mediating anti-inflammatory pathways. Additionally, we revealed that DPT increased (p < 0.05) the expression of ECM- (COL6A3, ELN, MMP9, TNMD) and inflammation-related factors (IL6, IL8, TNF) in human visceral adipocytes. These findings provide, for the first time, evidence of a novel role of DPT in obesity and its associated comorbidities by influencing AT remodelling and inflammation.

12.
Nutrients ; 11(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500090

RESUMO

Leptin, the product of the ob gene, was originally described as a satiety factor, playing a crucial role in the control of body weight. Nevertheless, the wide distribution of leptin receptors in peripheral tissues supports that leptin exerts pleiotropic biological effects, consisting of the modulation of numerous processes including thermogenesis, reproduction, angiogenesis, hematopoiesis, osteogenesis, neuroendocrine, and immune functions as well as arterial pressure control. Nitric oxide (NO) is a free radical synthesized from L-arginine by the action of the NO synthase (NOS) enzyme. Three NOS isoforms have been identified: the neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutive isoforms, and the inducible NOS (iNOS). NO mediates multiple biological effects in a variety of physiological systems such as energy balance, blood pressure, reproduction, immune response, or reproduction. Leptin and NO on their own participate in multiple common physiological processes, with a functional relationship between both factors having been identified. The present review describes the functional relationship between leptin and NO in different physiological processes.


Assuntos
Metabolismo Energético , Leptina/metabolismo , Óxido Nítrico/metabolismo , Animais , Remodelação Óssea , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Sistema Cardiovascular/fisiopatologia , Glucose/metabolismo , Humanos , Sistema Imunitário/metabolismo , Sistema Imunitário/patologia , Sistema Imunitário/fisiopatologia , Metabolismo dos Lipídeos , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Reprodução , Transdução de Sinais
13.
Genes (Basel) ; 10(3)2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818874

RESUMO

iNOS deficiency in ob/ob mice improved liver inflammation and ECM remodeling-related genes, decreasing fibrosis, and metabolic dysfunction. The activation of iNOS by leptin is necessary for the synthesis and secretion of TNC in hepatocytes, suggesting an important role of this alarmin in the development of NAFLD.


Assuntos
Leptina/genética , Cirrose Hepática/prevenção & controle , Óxido Nítrico Sintase Tipo II/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Leptina/administração & dosagem , Cirrose Hepática/sangue , Cirrose Hepática/genética , Masculino , Camundongos Knockout , Fenótipo , Proteólise , Tenascina/sangue
14.
J Clin Med ; 8(4)2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30970605

RESUMO

OBJECTIVE: Glucagon-like peptide (GLP)-1 has been proposed as a key candidate in glucose improvements after bariatric surgery. Our aim was to explore the role of GLP-1 in surgically-induced type 2 diabetes (T2D) improvement and its capacity to regulate human adipocyte inflammation. METHODS: Basal circulating concentrations of GLP-1 as well as during an oral glucose tolerance test (OGTT) were measured in lean and obese volunteers with and without T2D (n = 93). In addition, GLP-1 levels were determined before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB) (n = 77). The impact of GLP-1 on inflammation signalling pathways was also evaluated. RESULTS: We show that the reduced (p < 0.05) circulating levels of GLP-1 in obese T2D patients increased (p < 0.05) after RYGB. The area under the curve was significantly lower in obese patients with (p < 0.01) and without (p < 0.05) T2D compared to lean volunteers while obese patients with T2D exhibited decreased GLP-1 levels at baseline (p < 0.05) and 120 min (p < 0.01) after the OGTT. Importantly, higher (p < 0.05) pre-operative GLP-1 concentrations were found in patients with T2D remission after RYGB. We also revealed that exendin-4, a GLP-1 agonist, downregulated the expression of inflammation-related genes (IL1B, IL6, IL8, TNF) and, conversely, upregulated the mRNA levels of ADIPOQ in human visceral adipocytes. Furthermore, exendin-4 blocked (p < 0.05) LPS-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. CONCLUSIONS: Our data indicate that GLP-1 may contribute to glycemic control and exert a role in T2D remission after RYGB. GLP-1 is also involved in limiting inflammation in human visceral adipocytes.

15.
Nutrients ; 11(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484347

RESUMO

Bariatric surgery remains the most effective option for achieving important and sustained weight loss. We explored the effects of Roux-en-Y gastric bypass (RYGB) on the circulating levels of adiponectin, leptin, and the adiponectin/leptin (Adpn/Lep) ratio in patients with obesity and type 2 diabetes (T2D). Twenty-five T2D volunteers undergoing RYGB were included in the study, and further subclassified as patients that responded or not to RYBG, regarding remission of T2D. Anthropometric and biochemical variables were evaluated before and after RYGB. Obese patients with T2D exhibited an increase (p < 0.0001) in the Adpn/Lep ratio after RYGB. Changes in the Adpn/Lep ratio correlated better with changes in anthropometric data (p < 0.001) than with the variations of adiponectin or leptin alone. Multiple regression analysis revealed that the change in the Adpn/Lep ratio in patients with T2D was an independent predictor of the changes in body mass index (p < 0.001) and body fat percentage (p = 0.022). However, the Adpn/Lep ratio did not differ between individuals with or without T2D remission after RYGB. In summary, the current study demonstrated that after weight and body fat loss following RYGB, the Adpn/Lep ratio increased in patients with obesity and T2D.


Assuntos
Adiponectina/sangue , Diabetes Mellitus Tipo 2/prevenção & controle , Derivação Gástrica , Leptina/sangue , Obesidade/metabolismo , Adiponectina/metabolismo , Adulto , Feminino , Humanos , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/cirurgia
16.
Front Immunol ; 9: 2918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619282

RESUMO

Emerging evidence reveals that adipose tissue-associated inflammation is a main mechanism whereby obesity promotes colorectal cancer risk and progression. Increased inflammasome activity in adipose tissue has been proposed as an important mediator of obesity-induced inflammation and insulin resistance development. Chronic inflammation in tumor microenvironments has a great impact on tumor development and immunity, representing a key factor in the response to therapy. In this context, the inflammasomes, main components of the innate immune system, play an important role in cancer development showing tumor promoting or tumor suppressive actions depending on the type of tumor, the specific inflammasome involved, and the downstream effector molecules. The inflammasomes are large multiprotein complexes with the capacity to regulate the activation of caspase-1. In turn, caspase-1 enhances the proteolytic cleavage and the secretion of the inflammatory cytokines interleukin (IL)-1ß and IL-18, leading to infiltration of more immune cells and resulting in the generation and maintenance of an inflammatory microenvironment surrounding cancer cells. The inflammasomes also regulate pyroptosis, a rapid and inflammation-associated form of cell death. Recent studies indicate that the inflammasomes can be activated by fatty acids and high glucose levels linking metabolic danger signals to the activation of inflammation and cancer development. These data suggest that activation of the inflammasomes may represent a crucial step in the obesity-associated cancer development. This review will also focus on the potential of inflammasome-activated pathways to develop new therapeutic strategies for the prevention and treatment of obesity-associated colorectal cancer development.


Assuntos
Neoplasias Colorretais/imunologia , Citocinas/imunologia , Inflamassomos/imunologia , Inflamação/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Obesidade/imunologia , Animais , Doença Crônica , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Citocinas/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Obesidade/metabolismo , Microambiente Tumoral/imunologia
17.
Metabolism ; 87: 123-135, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29679615

RESUMO

OBJECTIVE: Kallistatin plays an important role in the inhibition of inflammation, oxidative stress, fibrosis and angiogenesis. We aimed to determine the impact of kallistatin on obesity and its associated metabolic alterations as well as its role in adipocyte inflammation and oxidative stress. METHODS: Samples obtained from 95 subjects were used in a case-control study. Circulating concentrations and expression levels of kallistatin as well as key inflammation, oxidative stress and extracellular matrix remodelling-related genes were analyzed. Circulating kallistatin concentrations were measured before and after weight loss achieved by Roux-en-Y gastric bypass (RYGB). The impact of kallistatin on lipopolysaccharide (LPS)- and tumour necrosis factor (TNF)-α-mediated inflammatory as well as oxidative stress signalling pathways was evaluated. RESULTS: We show that the reduced (P < 0.00001) circulating levels of kallistatin in obese patients increased (P < 0.00001) after RYGB. Moreover, gene expression levels of SERPINA4, the gene coding for kallistatin, were downregulated (P < 0.01) in the liver from obese subjects with non-alcoholic fatty liver disease. Additionally, we revealed that kallistatin reduced (P < 0.05) the expression of inflammation-related genes (CCL2, IL1B, IL6, IL8, TNFA, TGFB) and, conversely, upregulated (P < 0.05) mRNA levels of ADIPOQ and KLF4 in human adipocytes in culture. Kallistatin inhibited (P < 0.05) LPS- and TNF-α-induced inflammation in human adipocytes via downregulating the expression and secretion of key inflammatory markers. Furthermore, kallistatin also blocked (P < 0.05) TNF-α-mediated lipid peroxidation as well as NOX2 and HIF1A expression while stimulating (P < 0.05) the expression of SIRT1 and FOXO1. CONCLUSIONS: These findings provide, for the first time, evidence of a novel role of kallistatin in obesity and its associated comorbidities by limiting adipose tissue inflammation and oxidative stress.


Assuntos
Tecido Adiposo/patologia , Inflamação/metabolismo , Inflamação/patologia , Obesidade/metabolismo , Obesidade/patologia , Estresse Oxidativo , Serpinas/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Adulto , Anastomose em-Y de Roux , Estudos de Casos e Controles , Citocinas/biossíntese , Citocinas/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Fígado Gorduroso/metabolismo , Feminino , Humanos , Inflamação/genética , Fator 4 Semelhante a Kruppel , Lipopolissacarídeos/farmacologia , Fígado/metabolismo , Masculino , Obesidade/genética , Serpinas/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA