Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
EMBO J ; 43(3): 317-338, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177500

RESUMO

Lifelong hippocampal neurogenesis is maintained by a pool of multipotent adult neural stem cells (aNSCs) residing in the subgranular zone of the dentate gyrus (DG). The mechanisms guiding transition of NSCs from the developmental to the adult state remain unclear. We show here, by using nestin-based reporter mice deficient for cyclin D2, that the aNSC pool is established through cyclin D2-dependent proliferation during the first two weeks of life. The absence of cyclin D2 does not affect normal development of the dentate gyrus until birth but prevents postnatal formation of radial glia-like aNSCs. Furthermore, retroviral fate mapping reveals that aNSCs are born on-site from precursors located in the dentate gyrus shortly after birth. Taken together, our data identify the critical time window and the spatial location of the precursor divisions that generate the persistent population of aNSCs and demonstrate the central role of cyclin D2 in this process.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Ciclina D2/genética , Giro Denteado , Hipocampo , Neurogênese
2.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33782119

RESUMO

NKCC1 is the primary transporter mediating chloride uptake in immature principal neurons, but its role in the development of in vivo network dynamics and cognitive abilities remains unknown. Here, we address the function of NKCC1 in developing mice using electrophysiological, optical, and behavioral approaches. We report that NKCC1 deletion from telencephalic glutamatergic neurons decreases in vitro excitatory actions of γ-aminobutyric acid (GABA) and impairs neuronal synchrony in neonatal hippocampal brain slices. In vivo, it has a minor impact on correlated spontaneous activity in the hippocampus and does not affect network activity in the intact visual cortex. Moreover, long-term effects of the developmental NKCC1 deletion on synaptic maturation, network dynamics, and behavioral performance are subtle. Our data reveal a neural network function of NKCC1 in hippocampal glutamatergic neurons in vivo, but challenge the hypothesis that NKCC1 is essential for major aspects of hippocampal development.


Assuntos
Hipocampo/crescimento & desenvolvimento , Membro 2 da Família 12 de Carreador de Soluto/fisiologia , Animais , Animais Recém-Nascidos , Ácido Glutâmico/metabolismo , Camundongos , Rede Nervosa , Neurônios/metabolismo , Sinapses/metabolismo , Córtex Visual/fisiologia , Ácido gama-Aminobutírico/metabolismo
4.
Neuroimage ; 225: 117502, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33164876

RESUMO

Volumetric magnetic resonance imaging studies have shown that intense learning can be associated with grey matter volume increases in the adult brain. The underlying mechanisms are poorly understood. Here we used monocular deprivation in rats to analyze the mechanisms underlying use-dependent grey matter increases. Optometry for quantification of visual acuity was combined with volumetric magnetic resonance imaging and microscopic techniques in longitudinal and cross-sectional studies. We found an increased spatial vision of the open eye which was associated with a transient increase in the volumes of the contralateral visual and lateral entorhinal cortex. In these brain areas dendrites of neurons elongated, and there was a strong increase in the number of spines, the targets of synapses, which was followed by spine maturation and partial pruning. Astrocytes displayed a transient pronounced swelling and underwent a reorganization of their processes. The use-dependent increase in grey matter corresponded predominantly to the swelling of the astrocytes. Experience-dependent increase in brain grey matter volume indicates a gain of structure plasticity with both synaptic and astrocyte remodeling.


Assuntos
Astrócitos/citologia , Encéfalo/diagnóstico por imagem , Espinhas Dendríticas , Dominância Ocular , Substância Cinzenta/diagnóstico por imagem , Aprendizagem/fisiologia , Privação Sensorial , Visão Monocular , Animais , Encéfalo/crescimento & desenvolvimento , Tamanho Celular , Dendritos , Substância Cinzenta/crescimento & desenvolvimento , Imageamento por Ressonância Magnética , Plasticidade Neuronal/fisiologia , Tamanho do Órgão , Ratos
5.
Cereb Cortex ; 30(7): 3921-3937, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32147726

RESUMO

The balance of excitation and inhibition is essential for cortical information processing, relying on the tight orchestration of the underlying subcellular processes. Dynamic transcriptional control by DNA methylation, catalyzed by DNA methyltransferases (DNMTs), and DNA demethylation, achieved by ten-eleven translocation (TET)-dependent mechanisms, is proposed to regulate synaptic function in the adult brain with implications for learning and memory. However, focus so far is laid on excitatory neurons. Given the crucial role of inhibitory cortical interneurons in cortical information processing and in disease, deciphering the cellular and molecular mechanisms of GABAergic transmission is fundamental. The emerging relevance of DNMT and TET-mediated functions for synaptic regulation irrevocably raises the question for the targeted subcellular processes and mechanisms. In this study, we analyzed the role dynamic DNA methylation has in regulating cortical interneuron function. We found that DNMT1 and TET1/TET3 contrarily modulate clathrin-mediated endocytosis. Moreover, we provide evidence that DNMT1 influences synaptic vesicle replenishment and GABAergic transmission, presumably through the DNA methylation-dependent transcriptional control over endocytosis-related genes. The relevance of our findings is supported by human brain sample analysis, pointing to a potential implication of DNA methylation-dependent endocytosis regulation in the pathophysiology of temporal lobe epilepsy, a disease characterized by disturbed synaptic transmission.


Assuntos
Metilação de DNA/genética , Endocitose/genética , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Inibição Neural/genética , Sinapses/metabolismo , Animais , Clatrina , Proteínas do Citoesqueleto/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Epigenoma , Epilepsia do Lobo Temporal/genética , Humanos , Potenciais Pós-Sinápticos Inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vesículas Sinápticas/metabolismo , Transcriptoma
6.
Elife ; 122024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529532

RESUMO

Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.


Assuntos
Disfunção Cognitiva , Endofenótipos , Animais , Camundongos , Humanos , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Modelos Animais de Doenças , Lactatos/metabolismo , Concentração de Íons de Hidrogênio
7.
Cells ; 12(16)2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37626896

RESUMO

Since Joseph Altman published his pioneering work demonstrating neurogenesis in the hippocampus of adult rats, the number of publications in this field increased exponentially. Today, we know that the adult hippocampus harbors a pool of adult neural stem cells (NSCs) that are the source of life-long neurogenesis and plasticity. The functions of these NSCs are regulated by extrinsic cues arising from neighboring cells and the systemic environment. However, this tight regulation is subject to imbalance with age, resulting in a decline in adult NSCs and neurogenesis, which contributes to the progressive deterioration of hippocampus-related cognitive functions. Despite extensive investigation, the mechanisms underlying this age-related decline in neurogenesis are only incompletely understood, but appear to include an increase in NSC quiescence, changes in differentiation patterns, and NSC exhaustion. In this review, we summarize recent work that has improved our knowledge of hippocampal NSC aging, focusing on NSC-intrinsic mechanisms as well as cellular and molecular changes in the niche and systemic environment that might be involved in the age-related decline in NSC functions. Additionally, we identify future directions that may advance our understanding of NSC aging and the concomitant loss of hippocampal neurogenesis and plasticity.


Assuntos
Células-Tronco Adultas , Células-Tronco Neurais , Animais , Ratos , Neurogênese , Envelhecimento , Hipocampo
8.
Cells ; 12(3)2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36766774

RESUMO

Aging is accompanied by macro-structural alterations in the brain that may relate to age-associated cognitive decline. Animal studies could allow us to study this relationship, but so far it remains unclear whether their structural aging patterns correspond to those in humans. Therefore, by applying magnetic resonance imaging (MRI) and deformation-based morphometry (DBM), we longitudinally screened the brains of male RccHan:WIST rats for structural changes across their average lifespan. By combining dedicated region of interest (ROI) and voxel-wise approaches, we observed an increase in their global brain volume that was superimposed by divergent local morphologic alterations, with the largest aging effects in early and middle life. We detected a modality-dependent vulnerability to shrinkage across the visual, auditory, and somato-sensory cortical areas, whereas the piriform cortex showed partial resistance. Furthermore, shrinkage emerged in the amygdala, subiculum, and flocculus as well as in frontal, parietal, and motor cortical areas. Strikingly, we noticed the preservation of ectorhinal, entorhinal, retrosplenial, and cingulate cortical regions, which all represent higher-order brain areas and extraordinarily grew with increasing age. We think that the findings of this study will further advance aging research and may contribute to the establishment of interventional approaches to preserve cognitive health in advanced age.


Assuntos
Encéfalo , Disfunção Cognitiva , Humanos , Masculino , Animais , Ratos , Encéfalo/patologia , Envelhecimento/patologia , Imageamento por Ressonância Magnética/métodos , Hipocampo , Disfunção Cognitiva/patologia
9.
Biomolecules ; 13(7)2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37509073

RESUMO

The mitogen-activated protein kinase organizer 1 (MORG1) is a scaffold molecule for the ERK signaling pathway, but also binds to prolyl-hydroxylase 3 and modulates HIFα expression. To obtain further insight into the role of MORG1, knockout-mice were generated by homologous recombination. While Morg1+/- mice developed normally without any apparent phenotype, there were no live-born Morg1-/- knockout offspring, indicating embryonic lethality. The intrauterine death of Morg1-/- embryos is caused by a severe failure to develop brain and other neuronal structures such as the spinal cord and a failure of chorioallantoic fusion. On E8.5, Morg1-/- embryos showed severe underdevelopment and proliferative arrest as indicated by absence of Ki67 expression, impaired placental vascularization and altered phenotype of trophoblast giant cells. On E9.5, the malformed Morg1-/- embryos showed defective turning into the final fetal position and widespread apoptosis in many structures. In the subsequent days, apoptosis and decomposition of embryonic tissue progressed, accompanied by a massive infiltration of inflammatory cells. Developmental aberrancies were accompanied by altered expression of HIF-1/2α and VEGF-A and caspase-3 activation in embryos and extraembryonic tissues. In conclusion, the results suggest a multifactorial process that causes embryonic death in homozygous Morg1 mutant mice, described here, to the best of our knowledge, for the first time.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Placenta , Animais , Feminino , Camundongos , Gravidez , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Encéfalo/metabolismo , Camundongos Knockout , Placenta/metabolismo , Transdução de Sinais
10.
Front Mol Neurosci ; 16: 1223798, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37860083

RESUMO

Single-cell RNA sequencing (scRNA-seq) provides a powerful tool to evaluate the transcriptomic landscape and heterogeneity of thousands of cells in parallel. However, complex study designs or the unavailability of in-house instruments require the temporal disconnection between sample preparation and library construction, raising the need for efficient sample preservation methods which are compatible with scRNA-seq downstream analysis. Several studies evaluated the effect of methanol fixation as preservation method, yet none of them deeply assessed its effect on adult primary dissociated brain tissue. Here, we evaluated its effect on murine dentate gyrus (DG) single cell suspensions and on subsequent scRNA-seq downstream analysis by performing SOrting and Robot-assisted Transcriptome SEQuencing (SORT-seq), a partially robotized version of the CEL-seq2 protocol. Our results show that MeOH fixation preserves RNA integrity and has no apparent effects on cDNA library construction. They also suggest that fixation protects from sorting-induced cell stress and increases the proportion of high-quality cells. Despite evidence of mRNA leakage in fixed cells, their relative gene expression levels correlate well with those of fresh cells and fixation does not significantly affect the variance of the dataset. Moreover, it allows the identification of all major DG cell populations, including neural precursors, granule neurons and different glial cell types, with a tendency to preserve more neurons that are underrepresented in fresh samples. Overall, our data show that MeOH fixation is suitable for preserving primary neural cells for subsequent single-cell RNA profiling, helping to overcome challenges arising from complex workflows, improve experimental flexibility and facilitate scientific collaboration.

11.
BMC Neurosci ; 13: 46, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22564330

RESUMO

BACKGROUND: Adult neurogenesis continuously adds new neurons to the dentate gyrus and the olfactory bulb. It involves the proliferation and subsequent differentiation of neuronal progenitors, and is thus closely linked to the cell cycle machinery. Cell cycle progression is governed by the successive expression, activation and degradation of regulatory proteins. Among them, D-type cyclins control the exit from the G1 phase of the cell cycle. Cyclin D2 (cD2) has been shown to be required for the generation of new neurons in the neurogenic niches of the adult brain. It is differentially expressed during hippocampal development, and adult cD2 knock out (cD2KO) mice virtually lack neurogenesis in the dentate gyrus and olfactory bulb. In the present study we examined the dynamics of postnatal and adult neurogenesis in the dentate gyrus (DG) of cD2KO mice. Animals were injected with bromodeoxyuridine at seven time points during the first 10 months of life and brains were immunohistochemically analyzed for their potential to generate new neurons. RESULTS: Compared to their WT litters, cD2KO mice had considerably reduced numbers of newly born granule cells during the postnatal period, with neurogenesis becoming virtually absent around postnatal day 28. This was paralleled by a reduction in granule cell numbers, in the volume of the granule cell layer as well as in apoptotic cell death. CD2KO mice did not show any of the age-related changes in neurogenesis and granule cell numbers that were seen in WT litters. CONCLUSIONS: The present study suggests that hippocampal neurogenesis becomes increasingly dependent on cD2 during early postnatal development. In cD2KO mice, hippocampal neurogenesis ceases at a time point at which the tertiary germinative matrix stops proliferating, indicating that cD2 becomes an essential requirement for ongoing neurogenesis with the transition from developmental to adult neurogenesis. Our data further support the notion that adult neurogenesis continuously adds new neurons to the hippocampal network, hence increasing cell density of the DG.


Assuntos
Envelhecimento , Ciclina D2/deficiência , Giro Denteado/fisiologia , Neurogênese/genética , Neurônios/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Bromodesoxiuridina , Contagem de Células , Proliferação de Células , Giro Denteado/patologia , Proteínas do Domínio Duplacortina , Marcação In Situ das Extremidades Cortadas , Antígeno Ki-67/metabolismo , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo
12.
Neuropharmacology ; 171: 108112, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32335151

RESUMO

Depression is the leading cause of disability worldwide. Although most research into risk factors focuses on stress, dietary factors also have a strong link with depression. For instance, chronic vitamin B12-supplementation may reduce depression risk and helps to reverse the prodepressive effects of early life stress in animal models. However, it is still unclear whether a single acute dose of vitamin B12 is sufficient to induce antidepressant effects on molecular or behavioral levels. Based on pharmacological work and CRISPR-dCas9 epigenome editing in Neuro2A-cells we provide in vitro evidence for a link between vitamin B12, gene expression and DNA methylation of the antidepressant-associated gene Ntrk-2, which codes for the BDNF-receptor TRKB. Using stress-induction protocols in C57Bl/6 J mice combined with behavioral testing and subsequent molecular tissue analysis, we establish in vivo evidence for antidepressant effects of vitamin B12. Acute supplementation with vitamin B12, but not folic acid, selectively altered DNA methylation and gene expression of Ntrk-2 in vitro, albeit DNA methylation and Ntrk-2 gene expression do not correlate in vivo. Importantly, one acute vitamin B12 injection improved multiple behavioral measures in tests for antidepressant action and at the same time reversed the effects of chronic and acute stress on Ntrk-2 levels in vivo, however causality has not been proven at this stage. Taken together, acute vitamin B12 supplementation can reverse stress effects on Ntrk-2 gene expression and improve behaviors that are associated with depression-like behavior in mice. Our findings encourage further investigation of vitamin B12-supplementation as a novel model for antidepressant action.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Glicoproteínas de Membrana/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Vitamina B 12/farmacologia , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Linhagem Celular , Metilação de DNA/efeitos dos fármacos , Depressão/psicologia , Epigenômica , Feminino , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Receptor trkB/efeitos dos fármacos
13.
Front Cell Dev Biol ; 8: 639, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793592

RESUMO

Increased life expectancy in modern society comes at the cost of age-associated disabilities and diseases. Aged brains not only show reduced excitability and plasticity, but also a decline in inhibition. Age-associated defects in inhibitory circuits likely contribute to cognitive decline and age-related disorders. Molecular mechanisms that exert epigenetic control of gene expression contribute to age-associated neuronal impairments. Both DNA methylation, mediated by DNA methyltransferases (DNMTs), and histone modifications maintain neuronal function throughout lifespan. Here we provide evidence that DNMT1 function is implicated in the age-related loss of cortical inhibitory interneurons. Dnmt1 deletion in parvalbumin-positive interneurons attenuates their age-related decline in the cerebral cortex. Moreover, conditional Dnmt1-deficient mice show improved somatomotor performance and reduced aging-associated transcriptional changes. A decline in the proteostasis network, responsible for the proper degradation and removal of defective proteins, is implicated in age- and disease-related neurodegeneration. Our data suggest that DNMT1 acts indirectly on interneuron survival in aged mice by modulating the proteostasis network during life-time.

14.
Front Cell Dev Biol ; 7: 55, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069222

RESUMO

The adult dentate gyrus continuously generates new neurons that endow the brain with increased plasticity, helping to cope with changing environmental and cognitive demands. The process leading to the birth of new neurons spans several precursor stages and is the result of a coordinated series of fate decisions, which are tightly controlled by extrinsic signals. Many of these signals act through modulation of cell cycle (CC) components, not only to drive proliferation, but also for linage commitment and differentiation. In this review, we provide a comprehensive overview on key CC components and regulators, with emphasis on G1 phase, and analyze their specific functions in precursor cells of the adult hippocampus. We explore their role for balancing quiescence versus self-renewal, which is essential to maintain a lifelong pool of neural stem cells while producing new neurons "on demand." Finally, we discuss available evidence and controversies on the impact of CC/G1 length on proliferation versus differentiation decisions.

15.
Stroke ; 39(11): 3064-72, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18802207

RESUMO

BACKGROUND AND PURPOSE: Spreading depression (SD) is an epiphenomenon of neurological disorders, like stroke or traumatic brain injury. These diseases have been associated with an increased neurogenesis in the adult rodent dentate gyrus. Such proliferative activity can also be induced by conditions that--like SD--coincide with a disturbed neuronal excitability, eg, epilepsy. Thus we hypothesized that SD might likewise influence hippocampal neurogenesis and potentially act as mediator of injury-induced neurogenesis. METHODS: Repetitive cortical SD were induced by epidural application of 3 mol/L KCl. At different time points thereafter dentate gyrus neurogenesis was investigated by means of intraperitoneal bromodeoxyuridine injections and immunocytochemistry. Spatial learning and memory was tested in a Morris water maze. RESULTS: Cortical SD significantly increased proliferative activity in the ipsilateral subgranular zone on days 2 and 4. We detected about 280% more newborn cells in the dentate gyrus of rats that received bromodeoxyuridine during the first week after SD and were allowed to recover for 6 weeks. Most of these cells expressed the mature neuronal marker NeuN. The mitogenic action of SD was suppressed by systemic administration of the NMDA receptor antagonist MK-801. Behavioral performance of SD animals in the Morris water maze did not improve significantly. CONCLUSIONS: From our data we postulate that the increased dentate gyrus neurogenesis observed after brain injury may at least partly be mediated by SD-like epiphenomena. Furthermore they indicate that even a strongly enhanced dentate gyrus neurogenesis may occur without significant improvements in hippocampus-dependent spatial learning and memory.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Giro Denteado/fisiologia , Neurônios/fisiologia , Animais , Antimetabólitos/metabolismo , Apoptose/fisiologia , Biomarcadores/metabolismo , Bromodesoxiuridina/metabolismo , Giro Denteado/citologia , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Neurônios/citologia , Desempenho Psicomotor , Ratos , Ratos Wistar , Comportamento Espacial/fisiologia
16.
J Cereb Blood Flow Metab ; 37(5): 1776-1790, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27189903

RESUMO

Cortical spreading depolarizations are an epiphenomenon of human brain pathologies and associated with extensive but transient changes in ion homeostasis, metabolism, and blood flow. Previously, we have shown that cortical spreading depolarization have long-lasting consequences on the brains transcriptome and structure. In particular, we found that cortical spreading depolarization stimulate hippocampal cell proliferation resulting in a sustained increase in adult neurogenesis. Since the hippocampus is responsible for explicit memory and adult-born dentate granule neurons contribute to this function, cortical spreading depolarization might influence hippocampus-dependent cognition. To address this question, we induced cortical spreading depolarization in C57Bl/6 J mice by epidural application of 1.5 mol/L KCl and evaluated neurogenesis and behavior at two, four, or six weeks thereafter. Congruent with our previous findings in rats, we found that cortical spreading depolarization increases numbers of newborn dentate granule neurons. Moreover, exploratory behavior and object location memory were consistently enhanced. Reference memory in the water maze was virtually unaffected, whereas memory formation in the Barnes maze was impaired with a delay of two weeks and facilitated after four weeks. These data show that cortical spreading depolarization produces lasting changes in psychomotor behavior and complex, delay- and task-dependent changes in spatial memory, and suggest that cortical spreading depolarization-like events affect the emotional and cognitive outcomes of associated brain pathologies.


Assuntos
Comportamento Animal/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Hipocampo/fisiopatologia , Neurogênese/fisiologia , Memória Espacial/fisiologia , Animais , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos Endogâmicos C57BL
17.
J Cereb Blood Flow Metab ; 37(5): 1571-1594, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27328690

RESUMO

A modern understanding of how cerebral cortical lesions develop after acute brain injury is based on Aristides Leão's historic discoveries of spreading depression and asphyxial/anoxic depolarization. Treated as separate entities for decades, we now appreciate that these events define a continuum of spreading mass depolarizations, a concept that is central to understanding their pathologic effects. Within minutes of acute severe ischemia, the onset of persistent depolarization triggers the breakdown of ion homeostasis and development of cytotoxic edema. These persistent changes are diagnosed as diffusion restriction in magnetic resonance imaging and define the ischemic core. In delayed lesion growth, transient spreading depolarizations arise spontaneously in the ischemic penumbra and induce further persistent depolarization and excitotoxic damage, progressively expanding the ischemic core. The causal role of these waves in lesion development has been proven by real-time monitoring of electrophysiology, blood flow, and cytotoxic edema. The spreading depolarization continuum further applies to other models of acute cortical lesions, suggesting that it is a universal principle of cortical lesion development. These pathophysiologic concepts establish a working hypothesis for translation to human disease, where complex patterns of depolarizations are observed in acute brain injury and appear to mediate and signal ongoing secondary damage.


Assuntos
Lesões Encefálicas/fisiopatologia , Córtex Cerebral/patologia , Circulação Cerebrovascular/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Lesões Encefálicas/patologia , Córtex Cerebral/fisiopatologia , Imagem de Difusão por Ressonância Magnética , Eletrocorticografia , Humanos
18.
Arterioscler Thromb Vasc Biol ; 23(8): e32-6, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12816882

RESUMO

OBJECTIVE: Inflammatory infiltrates and atherosclerotic lesions emerge when monocytes adhere to endothelial cells (ECs), migrate into the subendothelial space, and become macrophages (MPhi(s)). Leukotrienes (LTs), products of 5-lipoxygenase, are powerful inflammatory mediators. 5-lipoxygenase+ MPhi(s) have been shown to increase during atherogenesis, and LT receptor (LT-R) transcripts were identified in diseased arteries. To investigate LT-Rs in cells involved in inflammation and atherogenesis, we used the in vitro models of human umbilical vein ECs (HUVECs) and monocyte-derived MPhi(s). METHODS AND RESULTS: HUVECs primarily expressed transcripts of the cysteinyl (cys) LT2-R, which was strongly upregulated by interleukin-4. By contrast, MPhi(s) predominantly expressed transcripts of the cysLT1-R. Calcium responses toward LTs revealed differential cysLT-R utilization by both cell types: HUVECs responded to both cysLTs, whereas MPhi(s) preferentially responded to LTD4; HUVECs, but not MPhi(s), were resistant toward a cysLT1-R antagonist, montelukast; cysLTs generated regular calcium oscillations in HUVECs that lasted >60 minutes, resulting in >500 oscillations per cell. By contrast, calcium elevations in MPhi(s) returned to baseline within seconds and were nonoscillatory. CONCLUSIONS: Our data raise the possibility that MPhi-derived LTs differentially activate cysLT2-Rs via paracrine stimulation and cysLT1-Rs via autocrine and paracrine stimulation during inflammation and atherogenesis.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Arteriosclerose/metabolismo , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Arteriosclerose/etiologia , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Inflamação/complicações , Inflamação/fisiopatologia , Regulação para Cima
19.
J Cereb Blood Flow Metab ; 35(4): 576-82, 2015 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-25515215

RESUMO

Recently, we showed that cortical spreading depolarizations (CSDs) are a potent trigger of hippocampal neurogenesis. Here, we evaluated CSD-induced cytogenesis in the entorhinal cortex (EC), which provides the major afferent input to the dentate gyrus. Cortical spreading depolarizations were induced by epidural application of 3 mol/L KCl, controls received equimolar NaCl. Cytogenesis was analyzed at different time points thereafter by means of intraperitoneal 5-bromodeoxyuridine injections (day 2, 4, or days 1 to 7) and immunohistochemistry. Recurrent CSD significantly increased numbers of newborn cells in the ipsilateral EC. The majority of these cells expressed glial markers. Microglia proliferation was maximal at day 2, whereas NG2 glia and astrocytes responded for a prolonged period of time (days 2 to 4). Newborn glia remained detectable for 6 weeks after CSD. Whereas we furthermore detected newborn cells immunopositive for doublecortin, a marker for immature neuronal cells, we found no evidence for the generation of new neurons in the EC. Our results indicate that CSD is a potent gliogenic stimulus, leading to rapid and enduring changes in the glial cellular composition of the affected brain tissue. Thus, CSD facilitates ongoing structural remodeling of the directly affected cortex that might contribute to the pathophysiology of CSD-related brain pathologies.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Córtex Entorrinal/citologia , Córtex Entorrinal/fisiologia , Neuroglia/citologia , Animais , Antimetabólitos/administração & dosagem , Bromodesoxiuridina/administração & dosagem , Proliferação de Células , Ácido Cítrico , Proteína Duplacortina , Combinação de Medicamentos , Compostos Férricos , Injeções , Masculino , Cloreto de Potássio/administração & dosagem , Ratos , Ratos Wistar , Sorbitol
20.
J Vis Exp ; (98)2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25938720

RESUMO

Adult neurogenesis is a highly regulated, multi-stage process in which new neurons are generated from an activated neural stem cell via increasingly committed intermediate progenitor subtypes. Each of these subtypes expresses a set of specific molecular markers that, together with specific morphological criteria, can be used for their identification. Typically, immunofluorescent techniques are applied involving subtype-specific antibodies in combination with exo- or endogenous proliferation markers. We herein describe immunolabeling methods for the detection and quantification of all stages of adult hippocampal neurogenesis. These comprise the application of thymidine analogs, transcardial perfusion, tissue processing, heat-induced epitope retrieval, ABC immunohistochemistry, multiple indirect immunofluorescence, confocal microscopy and cell quantification. Furthermore we present a sequential multiple immunofluorescence protocol which circumvents problems usually arising from the need of using primary antibodies raised in the same host species. It allows an accurate identification of all hippocampal progenitor subtypes together with a proliferation marker within a single section. These techniques are a powerful tool to study the regulation of different progenitor subtypes in parallel, their involvement in brain pathologies and their role in specific brain functions.


Assuntos
Anticorpos/química , Hipocampo/química , Hipocampo/citologia , Imuno-Histoquímica/métodos , Neurogênese/fisiologia , Neurônios/química , Neurônios/citologia , Animais , Camundongos , Microscopia Confocal/métodos , Células-Tronco Neurais/química , Células-Tronco Neurais/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA