Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
eNeuro ; 9(6)2022.
Artigo em Inglês | MEDLINE | ID: mdl-36316118

RESUMO

Neurons express overlapping homeostatic mechanisms to regulate synaptic function and network properties in response to perturbations of neuronal activity. Endocannabinoids (eCBs) are bioactive lipids synthesized in the postsynaptic compartments to regulate synaptic transmission, plasticity, and neuronal excitability primarily through retrograde activation of presynaptic cannabinoid receptor type 1 (CB1). The eCB system is well situated to regulate neuronal network properties and coordinate presynaptic and postsynaptic activity. However, the role of the eCB system in homeostatic adaptations to neuronal hyperactivity is unknown. To address this issue, we used Western blotting and targeted lipidomics to measure adaptations in eCB system to bicuculline (BCC)-induced chronic hyperexcitation in mature cultured rat cortical neurons, and used multielectrode array (MEA) recording and live-cell imaging of glutamate dynamics to test the effects of pharmacological manipulations of eCB on network activities. We show that BCC-induced chronic hyperexcitation triggers homeostatic downscaling and a coordinated adaptation to enhance tonic eCB signaling. Hyperexcitation triggers first the downregulation of fatty acid amide hydrolase (FAAH), the lipase that degrades the eCB anandamide, then an accumulation of anandamide and related metabolites, and finally a delayed upregulation of surface and total CB1. Additionally, we show that BCC-induced downregulation of surface AMPA-type glutamate receptors (AMPARs) and upregulation of CB1 occur through independent mechanisms. Finally, we show that endocannabinoids support baseline network activities before and after downscaling and is engaged to suppress network activity during adaptation to hyperexcitation. We discuss the implications of our findings in the context of downscaling and homeostatic regulation of in vitro oscillatory network activities.


Assuntos
Ácidos Araquidônicos , Endocanabinoides , Animais , Ratos , Endocanabinoides/metabolismo , Receptores de Canabinoides , Ácidos Araquidônicos/farmacologia , Alcamidas Poli-Insaturadas , Ácido Glutâmico , Receptor CB1 de Canabinoide , Moduladores de Receptores de Canabinoides/farmacologia
2.
Cell Rep ; 34(6): 108743, 2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33567284

RESUMO

Neuronal morphogenesis involves dramatic plasma membrane expansion, fueled by soluble N-ethylmaleimide-sensitive factor attachment protein eceptors (SNARE)-mediated exocytosis. Distinct fusion modes described at synapses include full-vesicle fusion (FVF) and kiss-and-run fusion (KNR). During FVF, lumenal cargo is secreted and vesicle membrane incorporates into the plasma membrane. During KNR, a transient fusion pore secretes cargo but closes without membrane addition. In contrast, fusion modes are not described in developing neurons. Here, we resolve individual exocytic events in developing murine cortical neurons and use classification tools to identify four distinguishable fusion modes: two FVF-like modes that insert membrane material and two KNR-like modes that do not. Discrete fluorescence profiles suggest distinct behavior of the fusion pore. Simulations and experiments agree that FVF-like exocytosis provides sufficient membrane material for morphogenesis. We find the E3 ubiquitin ligase TRIM67 promotes FVF-like exocytosis in part by limiting incorporation of the Qb/Qc SNARE SNAP47 into SNARE complexes and, thus, SNAP47 involvement in exocytosis.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Exocitose , Neurogênese , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/metabolismo , Sinapses/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Animais , Proteínas do Citoesqueleto/genética , Feminino , Camundongos , Camundongos Knockout , Proteínas Qb-SNARE/genética , Proteínas Qc-SNARE/genética , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Sinapses/genética , Proteínas com Motivo Tripartido/genética
3.
Front Mol Neurosci ; 13: 133, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848598

RESUMO

The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.

4.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31820781

RESUMO

Appropriate axon guidance is necessary to form accurate neuronal connections. Axon guidance cues that stimulate cytoskeletal reorganization within the growth cone direct axon navigation. Filopodia at the growth cone periphery have long been considered sensors for axon guidance cues, yet how they respond to extracellular cues remains ill defined. Our previous work found that the filopodial actin polymerase VASP and consequently filopodial stability are negatively regulated via nondegradative TRIM9-dependent ubiquitination. Appropriate VASP ubiquitination and deubiquitination are required for axon turning in response to the guidance cue netrin-1. Here we show that the TRIM9-related protein TRIM67 outcompetes TRIM9 for interacting with VASP and antagonizes TRIM9-dependent VASP ubiquitination. The surprising antagonistic roles of two closely related E3 ubiquitin ligases are required for netrin-1-dependent filopodial responses, axon turning and branching, and fiber tract formation. We suggest a novel model in which coordinated regulation of VASP ubiquitination by a pair of interfering ligases is a critical element of VASP dynamics, filopodial stability, and axon guidance.


Assuntos
Orientação de Axônios/fisiologia , Moléculas de Adesão Celular/metabolismo , Proteínas do Citoesqueleto/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Netrina-1/metabolismo , Fosfoproteínas/metabolismo , Pseudópodes/fisiologia , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Ubiquitina/metabolismo , Animais , Moléculas de Adesão Celular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Netrina-1/genética , Neurônios/citologia , Neurônios/metabolismo , Fosfoproteínas/genética , Ubiquitinação
5.
PLoS One ; 14(9): e0221962, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31483833

RESUMO

Vinculin (Vcn) is a ubiquitously expressed cytoskeletal protein that links transmembrane receptors to actin filaments, and plays a key role in regulating cell adhesion, motility, and force transmission. Metavinculin (MVcn) is a Vcn splice isoform that contains an additional exon encoding a 68-residue insert within the actin binding tail domain. MVcn is selectively expressed at sub-stoichiometic amounts relative to Vcn in smooth and cardiac muscle cells. Mutations in the MVcn insert are linked to various cardiomyopathies. In vitro analysis has previously shown that while both proteins can engage filamentous (F)-actin, only Vcn can promote F-actin bundling. Moreover, we and others have shown that MVcn can negatively regulate Vcn-mediated F-actin bundling in vitro. To investigate functional differences between MVcn and Vcn, we stably expressed either Vcn or MVcn in Vcn-null mouse embryonic fibroblasts. While both MVcn and Vcn were observed at FAs, MVcn-expressing cells had larger but fewer focal adhesions per cell compared to Vcn-expressing cells. MVcn-expressing cells migrated faster and exhibited greater persistence compared to Vcn-expressing cells, even though Vcn-containing FAs assembled and disassembled faster. Magnetic tweezer measurements on Vcn-expressing cells show a typical cell stiffening phenotype in response to externally applied force; however, this was absent in Vcn-null and MVcn-expressing cells. Our findings that MVcn expression leads to larger but fewer FAs per cell, in conjunction with the inability of MVcn to bundle F-actin in vitro and rescue the cell stiffening response, are consistent with our previous findings of actin bundling deficient Vcn variants, suggesting that deficient actin-bundling may account for some of the differences between Vcn and MVcn.


Assuntos
Movimento Celular , Adesões Focais , Mecanotransdução Celular , Vinculina/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Camundongos , Modelos Moleculares , Domínios Proteicos , Vinculina/química
6.
J Cell Biol ; 217(3): 1113-1128, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29351997

RESUMO

Neurite elongation and branching in developing neurons requires plasmalemma expansion, hypothesized to occur primarily via exocytosis. We posited that exocytosis in developing neurons and nonneuronal cells would exhibit distinct spatiotemporal organization. We exploited total internal reflection fluorescence microscopy to image vesicle-associated membrane protein (VAMP)-pHluorin-mediated exocytosis in mouse embryonic cortical neurons and interphase melanoma cells, and developed computer-vision software and statistical tools to uncover spatiotemporal aspects of exocytosis. Vesicle fusion behavior differed between vesicle types, cell types, developmental stages, and extracellular environments. Experiment-based mathematical calculations indicated that VAMP2-mediated vesicle fusion supplied excess material for the plasma membrane expansion that occurred early in neuronal morphogenesis, which was balanced by clathrin-mediated endocytosis. Spatial statistics uncovered distinct spatiotemporal regulation of exocytosis in the soma and neurites of developing neurons that was modulated by developmental stage, exposure to the guidance cue netrin-1, and the brain-enriched ubiquitin ligase tripartite motif 9. In melanoma cells, exocytosis occurred less frequently, with distinct spatial clustering patterns.


Assuntos
Exocitose/fisiologia , Neuritos/fisiologia , Neurogênese , Neurônios/fisiologia , Animais , Orientação de Axônios/efeitos dos fármacos , Orientação de Axônios/fisiologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Forma Celular , Clatrina/genética , Clatrina/metabolismo , Exocitose/efeitos dos fármacos , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Netrina-1/farmacologia , Neuritos/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Software , Ubiquitina-Proteína Ligases , Proteína 2 Associada à Membrana da Vesícula/metabolismo
7.
Mol Biol Cell ; 28(18): 2374-2385, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28701345

RESUMO

Extracellular netrin-1 and its receptor deleted in colorectal cancer (DCC) promote axon branching in developing cortical neurons. Netrin-dependent morphogenesis is preceded by multimerization of DCC, activation of FAK and Src family kinases, and increases in exocytic vesicle fusion, yet how these occurrences are linked is unknown. Here we demonstrate that tripartite motif protein 9 (TRIM9)-dependent ubiquitination of DCC blocks the interaction with and phosphorylation of FAK. Upon netrin-1 stimulation TRIM9 promotes DCC multimerization, but TRIM9-dependent ubiquitination of DCC is reduced, which promotes an interaction with FAK and subsequent FAK activation. We found that inhibition of FAK activity blocks elevated frequencies of exocytosis in vitro and elevated axon branching in vitro and in vivo. Although FAK inhibition decreased soluble N-ethylmaleimide attachment protein receptor (SNARE)-mediated exocytosis, assembled SNARE complexes and vesicles adjacent to the plasma membrane increased, suggesting a novel role for FAK in the progression from assembled SNARE complexes to vesicle fusion in developing murine neurons.


Assuntos
Axônios/metabolismo , Proteínas de Transporte/metabolismo , Receptor DCC/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Axônios/enzimologia , Proteínas de Transporte/genética , Membrana Celular/metabolismo , Exocitose/fisiologia , Feminino , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HEK293 , Humanos , Masculino , Fusão de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Netrina-1/genética , Netrina-1/metabolismo , Neurogênese/fisiologia , Neurônios/citologia , Neurônios/enzimologia , Neurônios/metabolismo , Fosforilação , Gravidez , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA