RESUMO
BACKGROUND: Leukocyte adhesion deficiency type 1 (LAD-1) is an inborn error of immunity characterized by a defect in leukocyte trafficking. METHODS: Patients with clinical suspicion of LAD-1 were referred to our institution. Complete blood count and flow cytometric analysis, to identify the expression of CD18, CD11b, and the lymphocyte population phenotyping, were performed, and statistical analysis was completed. RESULTS: We report clinical manifestations and immunological findings of six Mexican patients diagnosed with LAD-1. The diagnosis was based on typical clinical presentation, combined with laboratory demonstration of leukocytosis, and significant reduction or near absence of CD18 and its associated molecules CD11a, CD11b, and CD11c on leukocytes. We found atypical manifestations, not described in other countries, such as early-onset autoimmunity or infections caused by certain microorganisms. CONCLUSIONS: Patients with LAD-1 may present with atypical manifestations, making flow cytometry an indispensable tool to confirm the diagnosis. We present the first report of LAD-1 patients in a Latin American country.
Assuntos
Antígenos CD18 , Síndrome da Aderência Leucocítica Deficitária , Humanos , Antígenos CD18/metabolismo , México , Síndrome da Aderência Leucocítica Deficitária/diagnóstico , LeucócitosRESUMO
Thyroid hormones (THs) are ancient signaling molecules that contribute to the regulation of metabolism, energy homeostasis and growth. In vertebrates, the hypothalamus-pituitary-thyroid (HPT) axis links the corresponding organs through hormonal signals, including thyrotropin releasing factor (TRF), and thyroid stimulating hormone (TSH) that ultimately activates the synthesis and secretion of THs from the thyroid gland. Although this axis is conserved among most vertebrates, the identity of the hypothalamic TRF that positively regulates TSH synthesis and secretion varies. We review the evolution of the hypothalamic factors that induce TSH secretion, including thyrotropin-releasing hormone (TRH), corticotrophin-releasing hormone (CRH), urotensin-1-3, and sauvagine, and non-mammalian glucagon-like peptide in metazoans. Each of these peptides is part of an extracellular communication unit likely composed of at least 3 elements: the peptide, G-protein coupled receptor and bioavailability regulator, set up on the central neuroendocrine articulation. The bioavailability regulators include a TRH-specific ecto-peptidase, pyroglutamyl peptidase II, and a CRH-binding protein, that together with peptide secretion/transport rate and transduction coupling and efficiency at receptor level shape TRF signal intensity and duration. These vertebrate TRF communication units were coopted from bilaterian ancestors. The bona fide elements appeared early in chordates, and are either used alternatively, in parallel, or sequentially, in different vertebrate classes to control centrally the activity of the HPT axis. Available data also suggest coincidence between apparition of ligand and bioavailability regulator.
Assuntos
Hormônio Liberador de Tireotropina , Tireotropina , Animais , Hormônio Liberador da Corticotropina , Hipotálamo , Glândula TireoideRESUMO
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH2) is an intercellular signal produced mainly by neurons. Among the multiple pharmacological effects of TRH, that on food intake is not well understood. We review studies demonstrating that peripheral injection of TRH generally produces a transient anorexic effect, discuss the pathways that might initiate this effect, and explain its short half-life. In addition, central administration of TRH can produce anorexic or orexigenic effects, depending on the site of injection, that are likely due to interaction with TRH receptor 1. Anorexic effects are most notable when TRH is injected into the hypothalamus and the nucleus accumbens, while the orexigenic effect has only been detected by injection into the brain stem. Functional evidence points to TRH neurons that are prime candidate vectors for TRH action on food intake. These include the caudal raphe nuclei projecting to the dorsal motor nucleus of the vagus, and possibly TRH neurons from the tuberal lateral hypothalamus projecting to the tuberomammillary nuclei. For other TRH neurons, the anatomical or physiological context and impact of TRH in each synaptic domain are still poorly understood. The manipulation of TRH expression in well-defined neuron types will facilitate the discovery of its role in food intake control in each anatomical scene.
RESUMO
BACKGROUND: Hereditary actin-related protein 2/3 complex subunit 1B deficiency is characterized clinically by ear, skin, and lung infections, bleeding, eczema, food allergy, asthma, skin vasculitis, colitis, arthritis, short stature, and lymphadenopathy. OBJECTIVE: We aimed to describe the clinical, laboratory, and genetic features of six patients from four Mexican families. METHODS: We performed exome sequencing in patients of four families with suspected actinopathy, collected their data from medical records, and reviewed the literature for reports of other patients with actin-related protein 2/3 complex subunit 1B deficiency. RESULTS: Six patients from four families were included. All had recurrent infections, mainly bacterial pneumonia, and cellulitis. A total of 67% had eczema whereas 50% had food allergies, failure to thrive, hepatomegaly, and bleeding. Eosinophilia was found in all; 84% had thrombocytopenia, 67% had abnormal-size platelets and anemia. Serum levels of IgG, IgA, and IgE were highly increased in most; IgM was normal or low. T cells were decreased in 67% of patients, whereas B and NK cells were increased in half of patients. Two of the four probands had compound heterozygous variants. One patient was successfully transplanted. We identified 28 other patients whose most prevalent features were eczema, recurrent infections, failure to thrive, bleeding, diarrhea, allergies, vasculitis, eosinophilia, platelet abnormalities, high IgE/IgA, low T cells, and high B cells. CONCLUSION: Actin-related protein 2/3 complex subunit 1B deficiency has a variable and heterogeneous clinical spectrum, expanded by these cases to include keloid scars and Epstein-Barr virus chronic hepatitis. A novel deletion in exon 8 was shared by three unrelated families and might be the result of a founder effect.
Assuntos
Eczema , Eosinofilia , Infecções por Vírus Epstein-Barr , Vasculite , Humanos , Proteína 2 Relacionada a Actina , Actinas , Insuficiência de Crescimento , Herpesvirus Humano 4 , Imunoglobulina A , Imunoglobulina E , Reinfecção , Proteína 3 Relacionada a Actina/metabolismoRESUMO
Thyrotropin-releasing hormone (TRH; pGlu-His-Pro-NH(2)) has multiple, but transient, homeostatic functions in the brain. It is hydrolyzed in vitro by pyroglutamyl peptidase II (PPII), a narrow specificity ectoenzyme with a preferential localization in the brain, but evidence that PPII controls TRH communication in the brain in vivo is scarce. We therefore studied in male Wistar rats the distribution of PPII mRNA in the septum and the consequence of PPII inhibition on the analeptic effect of TRH injected into the medial septum. Twelve to 14% of cell profiles expressed PPII mRNA in the medial septum-diagonal band of Broca; in this region the specific activity of PPII was relatively high. Twenty to 35% of PPII mRNA-labeled profiles were positive for TRH-receptor 1 (TRH-R1) mRNA. The intramedial septum injection of TRH reduced, in a dose-dependent manner, the duration of ethanol-induced loss of righting reflex (LORR). Injection of the PPII inhibitor pGlu-Asn-Pro-7-amido-4-methylcoumarin into the medial septum enhanced the effect of TRH. The injection of a phosphinic TRH analog, a higher-affinity inhibitor of PPII, diminished the duration of LORR by itself. In contrast, the intraseptal injection of pGlu-Asp-Pro-NH(2), a peptide that did not inhibit PPII activity, or an inhibitor of prolyl oligopeptidase did not change the duration of LORR. We conclude that in the medial septum PPII activity may limit TRH action, presumably by reducing the concentration of TRH in the extracellular fluid around cells coexpressing PPII and TRH-R1.
Assuntos
Aminopeptidases/antagonistas & inibidores , Estimulantes do Sistema Nervoso Central/farmacologia , Ácido Pirrolidonocarboxílico/análogos & derivados , Septo do Cérebro/efeitos dos fármacos , Septo do Cérebro/enzimologia , Hormônio Liberador de Tireotropina/farmacologia , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Masculino , Peptídeos/farmacologia , Prolil Oligopeptidases , Ácido Pirrolidonocarboxílico/antagonistas & inibidores , Ácido Pirrolidonocarboxílico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Reflexo de Endireitamento/genética , Septo do Cérebro/metabolismo , Serina Endopeptidases/farmacologiaRESUMO
The dorsomedial nucleus of the hypothalamus (DMH) is part of the brain circuits that modulate organism responses to the circadian cycle, energy balance, and psychological stress. A large group of thyrotropin-releasing hormone (Trh) neurons is localized in the DMH; they comprise about one third of the DMH neurons that project to the lateral hypothalamus area (LH). We tested their response to various paradigms. In male Wistar rats, food restriction during adulthood, or chronic variable stress (CVS) during adolescence down-regulated adult DMH Trh mRNA levels compared to those in sedentary animals fed ad libitum; two weeks of voluntary wheel running during adulthood enhanced DMH Trh mRNA levels compared to pair-fed rats. Except for their magnitude, female responses to exercise were like those in male rats; in contrast, in female rats CVS did not change DMH Trh mRNA levels. A very strong negative correlation between DMH Trh mRNA levels and serum corticosterone concentration in rats of either sex was lost in CVS rats. CVS canceled the response to food restriction, but not that to exercise in either sex. TRH receptor 1 (Trhr) cells were numerous along the rostro-caudal extent of the medial LH. In either sex, fasting during adulthood reduced DMH Trh mRNA levels, and increased LH Trhr mRNA levels, suggesting fasting may inhibit the activity of TRHDMH->LH neurons. Thus, in Wistar rats DMH Trh mRNA levels are regulated by negative energy balance, exercise and chronic variable stress through sex-dependent and -independent pathways.
Assuntos
Hipotálamo , Hormônio Liberador de Tireotropina , Animais , Feminino , Masculino , Ratos , Corticosterona , Hipotálamo/metabolismo , Núcleo Mediodorsal do Tálamo , Atividade Motora , Ratos Wistar , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismoRESUMO
Introduction: The transcription factor Nuclear factor of activated T cells 5 (NFAT5), pivotal in immune regulation and function, can be induced by osmotic stress and tonicity-independent signals. Objective: We aimed to investigate and characterize two unrelated patients with Epstein-Barr virus susceptibility and no known genetic etiology. Methods: After informed consent, we reviewed the electronic charts, extracted genomic DNA, performed whole-exome sequencing, filtered, and prioritized their variants, and confirmed through Sanger sequencing, family segregation analysis, and some functional assays, including lymphoproliferation, cytotoxicity, and characterization of natural killer cells. Results: We describe two cases of pediatric Mexican patients with rare heterozygous missense variants in NFAT5 and EBV susceptibility, a school-age girl with chronic-active infection of the liver and bowel, and a teenage boy who died of hemophagocytic lymphohistiocytosis. Discussion: NFAT5 is an important regulator of the immune response. NFAT5 haploinsufficiency has been described as an immunodeficiency syndrome affecting both innate and adaptive immunity. EBV susceptibility might be another manifestation in the spectrum of this disease.
Assuntos
Infecções por Vírus Epstein-Barr , Linfo-Histiocitose Hemofagocítica , Adolescente , Criança , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Feminino , Haploinsuficiência , Herpesvirus Humano 4 , Humanos , Masculino , Fatores de Transcrição/genéticaRESUMO
Starvation induces tertiary hypothyroidism in adult rodents. Response of the hypothalamus-pituitary-thyroid (HPT) axis to starvation is stronger in adult males than in females. To improve the description of this sexual dimorphism, we analyzed the dynamics of HPT axis response to fasting at multiple levels. In adult rats of the same cohort, 24 and 48 h of starvation inhibited paraventricular nucleus Trh expression and serum concentrations of TSH and T4 earlier in males than in females, with lower intensity in females than in males. In adult females fasted for 36-72 h, serum TSH concentration decreased after 36 h, when the activity of thyrotropin-releasing hormone (TRH)-degrading ectoenzyme was increased in the median eminence. The kinetics of these events were distinct from those previously observed in male rats. We suggest that the sex difference in TSH secretion kinetics is driven not only at the level of paraventricular nucleus TRH neurons, but also by differences in post-secretory catabolism of TRH, with enhancement of TRH-degrading activity more sustained in male than female animals.
Assuntos
Jejum/metabolismo , Regulação da Expressão Gênica , Núcleo Hipotalâmico Paraventricular/metabolismo , Glândula Tireoide/metabolismo , Animais , Feminino , Masculino , Ratos Wistar , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores do Hormônio Liberador da Tireotropina/genética , Receptores do Hormônio Liberador da Tireotropina/metabolismo , Fatores Sexuais , Tireotropina/sangue , Tireotropina/metabolismo , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/metabolismo , Fatores de TempoRESUMO
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by ß2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
RESUMO
Central and peripheral mechanisms that modulate energy intake, partition and expenditure determine energy homeostasis. Thyroid hormones (TH) regulate energy expenditure through the control of basal metabolic rate and thermogenesis; they also modulate food intake. TH concentrations are regulated by the hypothalamus-pituitary-thyroid (HPT) axis, and by transport and metabolism in blood and target tissues. In mammals, hypophysiotropic thyrotropin-releasing hormone (TRH) neurons of the paraventricular nucleus of the hypothalamus integrate energy-related information. They project to the external zone of the median eminence (ME), a brain circumventricular organ rich in neuron terminal varicosities and buttons, tanycytes, other glial cells and capillaries. These capillary vessels form a portal system that links the base of the hypothalamus with the anterior pituitary. Tanycytes of the medio-basal hypothalamus express a repertoire of proteins involved in transport, sensing, and metabolism of TH; among them is type 2 deiodinase, a source of 3,3',5-triiodo-L-thyronine necessary for negative feedback on TRH neurons. Tanycytes subtypes are distinguished by position and phenotype. The end-feet of ß2-tanycytes intermingle with TRH varicosities and terminals in the external layer of the ME and terminate close to the ME capillaries. Besides type 2 deiodinase, ß2-tanycytes express the TRH-degrading ectoenzyme (TRH-DE); this enzyme likely controls the amount of TRH entering portal vessels. TRH-DE is rapidly upregulated by TH, contributing to TH negative feedback on HPT axis. Alterations in energy balance also regulate the expression and activity of TRH-DE in the ME, making ß2-tanycytes a hub for energy-related regulation of HPT axis activity. ß2-tanycytes also express TRH-R1, which mediates positive effects of TRH on TRH-DE activity and the size of ß2-tanycyte end-feet contacts with the basal lamina adjacent to ME capillaries. These end-feet associations with ME capillaries, and TRH-DE activity, appear to coordinately control HPT axis activity. Thus, down-stream of neuronal control of TRH release by action potentials arrival in the external layer of the median eminence, imbricated intercellular processes may coordinate the flux of TRH into the portal capillaries. In conclusion, ß2-tanycytes appear as a critical cellular element for the somatic and post-secretory control of TRH flux into portal vessels, and HPT axis regulation in mammals.
RESUMO
Ecto-peptidases modulate the action of peptides in the extracellular space. The relationship between peptide receptor and ecto-peptidase localization, and the physiological role of peptidases is poorly understood. Current evidence suggests that pyroglutamyl peptidase II (PPII) inactivates neuronally released thyrotropin-releasing hormone (TRH). The impact of PPII localization in the anterior pituitary on the endocrine activities of TRH is unknown. We have studied whether PPII influences TRH signaling in anterior pituitary cells in primary culture. In situ hybridization (ISH) experiments showed that PPII mRNA was expressed only in 5-6% of cells. ISH for PPII mRNA combined with immunocytochemistry for prolactin, beta-thyrotropin, or growth hormone, showed that 66% of PPII mRNA expressing cells are lactotrophs, 34% somatotrophs while none are thyrotrophs. PPII activity was reduced using a specific phosphorothioate antisense oligodeoxynucleotide or inhibitors. Compared with mock or scrambled oligodeoxynucleotide-treated controls, knock-down of PPII expression by antisense targeting increased TRH-induced release of prolactin, but not of thyrotropin. Similar data were obtained with either a transition-state or a tight binding inhibitor. These results demonstrate that PPII expression in lactotrophs coincides with its ability to control prolactin release. It may play a specialized role in TRH signaling in the anterior pituitary. Anterior pituitary ecto-peptidases may fulfill unique functions associated with their restricted cell-specific expression.
Assuntos
Aminopeptidases/fisiologia , Adeno-Hipófise/enzimologia , Prolactina/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , Hormônio Liberador de Tireotropina/fisiologia , Animais , Células Cultivadas , Feminino , Hibridização In Situ , RNA Mensageiro/metabolismo , Ratos , Ratos WistarRESUMO
Aminopeptidase N (APN) and neprilysin (NEP) inactivate neuropeptides released into the brain extracellular fluid. We previously showed that the expression of pyroglutamyl peptidase II (PPII), the TRH degrading ecto-enzyme, is regulated in rat brain by amygdaline kindling, a paradigm that activates neuronal pathways in the limbic system increasing the expression of several neuropeptides including TRH and opioids. To understand the specificity of this phenomenon, we studied APN and NEP expression in brains of partially or fully kindled rats (stage II and V), sacrificed 6 h after last stimulus, compared with sham-operated animals. In situ hybridization analysis of NEP mRNA levels showed decreased expression at stage II in CA1, CA2, olfactory tubercle and medial mammillary nucleus, and increased at stage V in CA1 and CA2 cells. These changes were specific for the ipsilateral side. APN mRNA levels, semi-quantified by RT-PCR, were decreased at stage II and increased at stage V, in frontal cortex-olfactory tubercle, and hippocampus. NEP and APN enzymatic activities, determined by fluorometric assays, followed similar variations to their respective mRNA levels. The coordinated changes (in some regions) of NEP and APN expression were opposite to those previously observed for PPII mRNA and activity levels in limbic regions. These results demonstrate that expression of ectopeptidases can be regulated when peptide neurons are activated and, that regulation is enzyme-, region-, and stage-specific.
Assuntos
Antígenos CD13/metabolismo , Excitação Neurológica/fisiologia , Sistema Límbico/fisiologia , Neprilisina/metabolismo , Animais , Antígenos CD13/genética , Estimulação Elétrica , Hibridização In Situ , Masculino , Neprilisina/genética , Ratos , Ratos WistarRESUMO
Brain derived neurotrophic factor (BDNF) increases the levels of pre-pro-thyrotropin releasing hormone (TRH) mRNA in fetal rodent hypothalamic neurons that express TrkB receptors. The present studies aimed at better understanding the role of BDNF in establishing and maintaining the TRH phenotype in hypothalamic neurons during early development. To determine where BDNF regulates the expression of pre-pro-TRH mRNA in vivo, we compared the hypothalamic distribution of pre-pro-TRH mRNA to that of TrkB mRNA. Full-length TrkB (FL-TrkB) mRNA was detected earlier in development than pre-pro-TRH mRNA in the region that gives rise to the paraventricular nucleus of the hypothalamus (PVN). We also evaluated the effects of BDNF on the expression of pre-pro-TRH mRNA in vitro. BDNF up-regulated the levels of pre-pro-TRH mRNA in primary cell cultures obtained from the hypothalamus or the PVN of 17 days old fetuses or newborn rats. This effect was abolished by PD98059, an inhibitor of the mitogen-activated protein kinase kinase (MEK) 1/2 or 5. The effect of BDNF on pre-pro-TRH mRNA levels was reversible. The continuous application of BDNF led to a desensitization of the response at day 10 in vitro, an effect that correlated with a drop in the levels of FL-TrkB protein. In conclusion, BDNF enhances the expression of pre-pro-TRH mRNA in PVN neurons. This effect is reversible, decreases with time, and requires an active MEK. BDNF may contribute to the enhancement of pre-pro-TRH mRNA expression in the hypothalamic PVN during development.
Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Núcleo Hipotalâmico Paraventricular/fisiologia , Precursores de Proteínas/genética , Transdução de Sinais/fisiologia , Hormônio Liberador de Tireotropina/genética , Animais , Animais Recém-Nascidos , Carcinoma Medular , Feminino , Hipotálamo/citologia , Hipotálamo/embriologia , Hipotálamo/fisiologia , Masculino , Neurônios/citologia , Neurônios/fisiologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/embriologia , Gravidez , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor trkB/genética , Neoplasias da Glândula Tireoide , Células Tumorais CultivadasRESUMO
PURPOSE: Corticosterone prevents cold-induced stimulation of thyrotropin-releasing hormone (Trh) expression in rats, and the stimulatory effect of dibutyryl cyclic-adenosine monophosphate (dB-cAMP) on Trh transcription in hypothalamic cultures. We searched for the mechanism of this interference. METHODS: Immunohistochemical analyses of phosphorylated cAMP-response element binding protein (pCREB) were performed in the paraventricular nucleus (PVN) of Wistar rats, and in cell cultures of 17-day old rat hypothalami, or neuroblastoma SH-SY5Y cells. Cultures were incubated 1h with dB-cAMP, dexamethasone and both drugs combined; their nuclear extracts were used for chromatin immunoprecipitation; cytosolic or nuclear extracts for coimmunoprecipitation analyses of catalytic subunit of protein kinase A (PKAc) and of glucocorticoid receptor (GR); their subcellular distribution was analyzed by immunocytochemistry. RESULTS: Cold exposure increased pCREB in TRH neurons of rats PVN, effect blunted by corticosterone previous injection. Dexamethasone interfered with forskolin increase in nuclear pCREB and its binding to Trh promoter; antibodies against histone deacetylase-3 precipitated chromatin from nuclear extracts of hypothalamic cells treated with tri-iodothyronine but not with dB-cAMP + dexamethasone, discarding chromatin compaction as responsible mechanism. Co-immunoprecipitation analyses of cytosolic or nuclear extracts showed protein:protein interactions between activated GR and PKAc. Immunocytochemical analyses of hypothalamic or SH-SY5Y cells revealed diminished nuclear translocation of PKAc and GR in cells incubated with forskolin + dexamethasone, compared to either forskolin or dexamethasone alone. CONCLUSIONS: Glucocorticoids and cAMP exert mutual inhibition of Trh transcription through interaction of activated glucocorticoid receptor with protein kinase A catalytic subunit, reducing their nuclear translocation, limiting cAMP-response element binding protein phosphorylation and its binding to Trh promoter.
Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Neurônios/metabolismo , Receptores de Glucocorticoides/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Temperatura Baixa , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Neurônios/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos WistarRESUMO
In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, ß-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.
Assuntos
Hipotálamo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Orexinas/farmacologia , Hormônio Liberador de Tireotropina/metabolismo , Animais , Células Cultivadas , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/citologia , Hipotálamo/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Orexinas/metabolismo , Hormônios Hipofisários/metabolismo , Precursores de Proteínas/metabolismo , Ácido Pirrolidonocarboxílico/farmacologia , Ratos Wistar , Glândula Tireoide/metabolismo , Tireotropina/metabolismoRESUMO
Neutral metallo-aminopeptidase (APN) catalyzes the cleavage of neutral and basic amino acids from the N-terminus of protein or peptide substrates. APN expression is dysregulated in inflammatory diseases as well as in several types of cancer. Therefore, inhibitors of APN may be effective against cancer and inflammation. By virtual screening and enzymatic assays, we identified three non-competitive inhibitors (α > 1) of the porcine and human APN with Ki values in the µM range. These non-peptidic compounds lack the classical zinc-binding groups (ZBG) present in most of the APN inhibitors. Molecular docking simulations suggested the novel inhibitors suppress APN activity by an alternative mechanism to Zn coordination: they interacted with residues comprising the S1 and S5' subsites of APN. Of note, these compounds also inhibited the porcine aminopeptidase A (pAPA) using a competitive inhibition mode. This indicated differences in the binding mode of these compounds with APN and APA. Based on sequence and structural analyses, we predicted the significance of targeting human APN residues: Ala-351, Arg-442, Ala-474, Phe-896 and Asn-900 for improving the selectivity of the identified compounds. Remarkably, the intraperitoneal injection of compounds BTB07018 and JFD00064 inhibited APN activity in rat brain, liver and kidney indicating good bio-distribution of these inhibitors in vivo. These data reinforce the idea of designing novel APN inhibitors based on lead compounds without ZBG.
Assuntos
Aminopeptidases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Animais , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Humanos , Simulação de Acoplamento Molecular , Especificidade de Órgãos , Conformação Proteica , Ratos , Suínos , Zinco/químicaRESUMO
This review presents the findings that led to the discovery of TRH and the understanding of the central mechanisms which control hypothalamus-pituitary-thyroid axis (HPT) activity. The earliest studies on thyroid physiology are now dated a century ago when basal metabolic rate was associated with thyroid status. It took over 50 years to identify the key elements involved in the HPT axis. Thyroid hormones (TH: T4 and T3) were characterized first, followed by the semi-purification of TSH whose later characterization paralleled that of TRH. Studies on the effects of TH became possible with the availability of synthetic hormones. DNA recombinant techniques facilitated the identification of all the elements involved in the HPT axis, including their mode of regulation. Hypophysiotropic TRH neurons, which control the pituitary-thyroid axis, were identified among other hypothalamic neurons which express TRH. Three different deiodinases were recognized in various tissues, as well as their involvement in cell-specific modulation of T3 concentration. The role of tanycytes in setting TRH levels due to the activity of deiodinase type 2 and the TRH-degrading ectoenzyme was unraveled. TH-feedback effects occur at different levels, including TRH and TSH synthesis and release, deiodinase activity, pituitary TRH-receptor and TRH degradation. The activity of TRH neurons is regulated by nutritional status through neurons of the arcuate nucleus, which sense metabolic signals such as circulating leptin levels. Trh expression and the HPT axis are activated by energy demanding situations, such as cold and exercise, whereas it is inhibited by negative energy balance situations such as fasting, inflammation or chronic stress. New approaches are being used to understand the activity of TRHergic neurons within metabolic circuits.
Assuntos
Sistema Hipotálamo-Hipofisário/metabolismo , Hipófise/metabolismo , Glândula Tireoide/metabolismo , Hormônios Tireóideos/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Animais , Humanos , Hipotálamo/metabolismo , NeuroendocrinologiaRESUMO
The hypothalamus regulates the homeostasis of the organism by controlling hormone secretion from the pituitary. The molecular mechanisms that regulate the differentiation of the hypothalamic thyrotropin-releasing hormone (TRH) phenotype are poorly understood. We have previously shown that Klf10 or TGFß inducible early gene-1 (TIEG1) is enriched in fetal hypothalamic TRH neurons. Here, we show that expression of TGFß isoforms (1-3) and both TGFß receptors (TßRI and II) occurs in the hypothalamus concomitantly with the establishment of TRH neurons during late embryonic development. TGFß2 induces Trh expression via a TIEG1 dependent mechanism. TIEG1 regulates Trh expression through an evolutionary conserved GC rich sequence on the Trh promoter. Finally, in mice deficient in TIEG1, Trh expression is lower than in wild type animals at embryonic day 17. These results indicate that TGFß signaling, through the upregulation of TIEG1, plays an important role in the establishment of Trh expression in the embryonic hypothalamus.
Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/metabolismo , Neurônios/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta2/metabolismo , Animais , Proteínas de Ligação a DNA/deficiência , Embrião de Mamíferos , Feto , Hipotálamo/citologia , Hipotálamo/crescimento & desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Wistar , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Hormônio Liberador de Tireotropina/genética , Fatores de Transcrição/deficiência , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta3/genética , Fator de Crescimento Transformador beta3/metabolismoRESUMO
Fasting down-regulates the hypothalamus-pituitary-thyroid (HPT) axis activity through a reduction of TRH synthesis in neurons of the parvocellular paraventricular nucleus of the hypothalamus (PVN). These TRH neurons project to the median eminence (ME), where TRH terminals are close to the cytoplasmic extensions of ß2 tanycytes. Tanycytes express pyroglutamyl peptidase II (PPII), the TRH-degrading ectoenzyme that controls the amount of TRH that reaches the anterior pituitary. We tested the hypothesis that regulation of ME PPII activity is another mechanism by which fasting affects the activity of the HPT axis. Semiquantitative in situ hybridization histochemistry data indicated that PPII and deiodinase 2 mRNA levels increased in tanycytes after 48 hours of fasting. This increase was transitory, followed by an increase of PPII activity in the ME, and a partial reversion of the reduction in PVN pro-TRH mRNA levels and the number of TRH neurons detected by immunohistochemistry. In fed animals, adrenalectomy and corticosterone treatment did not change ME PPII activity 72 hours later. Methimazole-induced hypothyroidism produced a profound drop in tanycytes PPII mRNA levels, which was reverted by 3 days of treatment with T4. The activity of thyroliberinase, the serum isoform of PPII, was increased at most fasting time points studied. We conclude that delayed increases in both the ME PPII as well as the thyroliberinase activities in fasted male rats may facilitate the maintenance of the deep down-regulation of the HPT axis function, despite a partial reactivation of TRH expression in the PVN.
Assuntos
Aminopeptidases/genética , Células Ependimogliais/enzimologia , Jejum/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Hipotálamo/metabolismo , Eminência Mediana/metabolismo , Ácido Pirrolidonocarboxílico/análogos & derivados , RNA Mensageiro/metabolismo , Hormônio Liberador de Tireotropina/metabolismo , Adrenalectomia , Aminopeptidases/efeitos dos fármacos , Aminopeptidases/metabolismo , Animais , Antitireóideos/farmacologia , Corticosterona/farmacologia , Células Ependimogliais/efeitos dos fármacos , Células Ependimogliais/metabolismo , Hipotálamo/citologia , Hipotálamo/efeitos dos fármacos , Hipotireoidismo , Iodeto Peroxidase/genética , Masculino , Metimazol/farmacologia , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Núcleo Hipotalâmico Paraventricular/metabolismo , Precursores de Proteínas/genética , Ácido Pirrolidonocarboxílico/metabolismo , RNA Mensageiro/efeitos dos fármacos , Ratos , Hormônio Liberador de Tireotropina/efeitos dos fármacos , Hormônio Liberador de Tireotropina/genética , Tiroxina/farmacologia , Iodotironina Desiodinase Tipo IIRESUMO
OBJECTIVE: Thyrotropin-releasing hormone (TRH) is inactivated in the extracellular compartment by pyroglutamyl aminopeptidase II (PPII), a narrow specificity ectopeptidase present in the brain and in the lactotrophs of the adenohypophysis. TRH and various hypothalamic/paracrine agents regulate the activity of PPII on the surface of adenohypophyseal cells in primary culture. The activity of the hypothalamic-pituitary-thyroid axis presents circadian variations including an increase of serum thyrotropin levels in the early hours of the day. The purpose of this study was to determine whether adenohypophyseal PPII activity fluctuates during the daytime in the male rat and the role of TRH in these regulatory events in vivo. RESULTS: Adenohypophyseal PPII specific activity and mRNA levels presented diurnal variations. A decrease in specific activity occurred with a minimum between 0930 and 1130 h, associated with increased serum thyrotropin levels. PPII mRNA levels were lowest at 0800 h. Intraperitoneal injection at 0800 or 1000 h of [3-Me-His(2)]-TRH, a potent agonist of the TRH receptor, reduced PPII specific activity at 30 min post-injection which was followed by a return to basal levels at 2 h. A second phase of decrease occurred between 4 and 8 h post-injection. Intravenous injection of a TRH-immune serum induced, at 2 h post-injection, an increase in adenohypophyseal PPII specific activity, which lasted up to 6 h. CONCLUSIONS: Adenohypophyseal PPII activity and mRNA levels fluctuate during the day; TRH down-regulates PPII activity in vivo, contributing to some of these variations. These new findings, and previous data, suggest that adenohypophyseal PPII activity varies in distinct physiological events, in response to endocrine and hypothalamic/paracrine factors, potentially modulating responses to TRH.