Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 564(7735): 225-228, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30542165

RESUMO

Quantum key distribution1 has reached the level of maturity required for deployment in real-world scenarios2-6. It has previously been shown to operate alongside classical communication in the same telecommunication fibre7-9 and over long distances in fibre10,11 and in free-space links12-15. Despite these advances, the practical applicability of quantum key distribution is curtailed by the fact that most implementations and protocols are limited to two communicating parties. Quantum networks scale the advantages of quantum key distribution protocols to more than two distant users. Here we present a fully connected quantum network architecture in which a single entangled photon source distributes quantum states to many users while minimizing the resources required for each. Further, it does so without sacrificing security or functionality relative to two-party communication schemes. We demonstrate the feasibility of our approach using a single source of bipartite polarization entanglement, which is multiplexed into 12 wavelength channels. Six states are then distributed between four users in a fully connected graph using only one fibre and one polarization analysis module per user. Because no adaptations of the entanglement source are required to add users, the network can readily be scaled to a large number of users, without requiring trust in the provider of the source. Unlike previous attempts at multi-user networks, which have been based on active optical switches and therefore limited to some duty cycle, our implementation is fully passive and thus has the potential for unprecedented quantum communication speeds.

2.
Proc Natl Acad Sci U S A ; 116(14): 6684-6688, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30872476

RESUMO

Quantum entanglement is one of the most extraordinary effects in quantum physics, with many applications in the emerging field of quantum information science. In particular, it provides the foundation for quantum key distribution (QKD), which promises a conceptual leap in information security. Entanglement-based QKD holds great promise for future applications owing to the possibility of device-independent security and the potential of establishing global-scale quantum repeater networks. While other approaches to QKD have already reached the level of maturity required for operation in absence of typical laboratory infrastructure, comparable field demonstrations of entanglement-based QKD have not been performed so far. Here, we report on the successful distribution of polarization-entangled photon pairs between Malta and Sicily over 96 km of submarine optical telecommunications fiber. We observe around 257 photon pairs per second, with a polarization visibility above 90%. Our results show that QKD based on polarization entanglement is now indeed viable in long-distance fiber links. This field demonstration marks the longest-distance distribution of entanglement in a deployed telecommunications network and demonstrates an international submarine quantum communication channel. This opens up myriad possibilities for future experiments and technological applications using existing infrastructure.

3.
Phys Rev Lett ; 127(4): 040506, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34355974

RESUMO

The phenomenon of entanglement marks one of the furthest departures from classical physics and is indispensable for quantum information processing. Despite its fundamental importance, the distribution of entanglement over long distances through photons is unfortunately hindered by unavoidable decoherence effects. Entanglement distillation is a means of restoring the quality of such diluted entanglement by concentrating it into a pair of qubits. Conventionally, this would be done by distributing multiple photon pairs and distilling the entanglement into a single pair. Here, we turn around this paradigm by utilizing pairs of single photons entangled in multiple degrees of freedom. Specifically, we make use of the polarization and the energy-time domain of photons, both of which are extensively field tested. We experimentally chart the domain of distillable states and achieve relative fidelity gains up to 13.8%. Compared to the two-copy scheme, the distillation rate of our single-copy scheme is several orders of magnitude higher, paving the way towards high-capacity and noise-resilient quantum networks.

4.
Exp Astron (Dordr) ; 51(3): 1677-1694, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744306

RESUMO

Recently, the European Commission supported by many European countries has announced large investments towards the commercialization of quantum technology (QT) to address and mitigate some of the biggest challenges facing today's digital era - e.g. secure communication and computing power. For more than two decades the QT community has been working on the development of QTs, which promise landmark breakthroughs leading to commercialization in various areas. The ambitious goals of the QT community and expectations of EU authorities cannot be met solely by individual initiatives of single countries, and therefore, require a combined European effort of large and unprecedented dimensions comparable only to the Galileo or Copernicus programs. Strong international competition calls for a coordinated European effort towards the development of QT in and for space, including research and development of technology in the areas of communication and sensing. Here, we aim at summarizing the state of the art in the development of quantum technologies which have an impact in the field of space applications. Our goal is to outline a complete framework for the design, development, implementation, and exploitation of quantum technology in space.

5.
Nature ; 497(7448): 227-30, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23584590

RESUMO

The violation of a Bell inequality is an experimental observation that forces the abandonment of a local realistic viewpoint--namely, one in which physical properties are (probabilistically) defined before and independently of measurement, and in which no physical influence can propagate faster than the speed of light. All such experimental violations require additional assumptions depending on their specific construction, making them vulnerable to so-called loopholes. Here we use entangled photons to violate a Bell inequality while closing the fair-sampling loophole, that is, without assuming that the sample of measured photons accurately represents the entire ensemble. To do this, we use the Eberhard form of Bell's inequality, which is not vulnerable to the fair-sampling assumption and which allows a lower collection efficiency than other forms. Technical improvements of the photon source and high-efficiency transition-edge sensors were crucial for achieving a sufficiently high collection efficiency. Our experiment makes the photon the first physical system for which each of the main loopholes has been closed, albeit in different experiments.

6.
Proc Natl Acad Sci U S A ; 113(48): 13648-13653, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856744

RESUMO

Spatial modes of light can potentially carry a vast amount of information, making them promising candidates for both classical and quantum communication. However, the distribution of such modes over large distances remains difficult. Intermodal coupling complicates their use with common fibers, whereas free-space transmission is thought to be strongly influenced by atmospheric turbulence. Here, we show the transmission of orbital angular momentum modes of light over a distance of 143 km between two Canary Islands, which is 50× greater than the maximum distance achieved previously. As a demonstration of the transmission quality, we use superpositions of these modes to encode a short message. At the receiver, an artificial neural network is used for distinguishing between the different twisted light superpositions. The algorithm is able to identify different mode superpositions with an accuracy of more than 80% up to the third mode order and decode the transmitted message with an error rate of 8.33%. Using our data, we estimate that the distribution of orbital angular momentum entanglement over more than 100 km of free space is feasible. Moreover, the quality of our free-space link can be further improved by the use of state-of-the-art adaptive optics systems.

7.
Phys Rev Lett ; 121(20): 200502, 2018 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-30500221

RESUMO

Sources of entanglement are an enabling resource in quantum technology, and pushing the limits of generation rate and quality of entanglement is a necessary prerequisite towards practical applications. Here, we present an ultrabright source of polarization-entangled photon pairs based on time-reversed Hong-Ou-Mandel interference. By superimposing four pair-creation possibilities on a polarization beam splitter, pairs of identical photons are separated into two spatial modes without the usual requirement for wavelength distinguishability or noncollinear emission angles. Our source yields high-fidelity polarization entanglement and high pair-generation rates without any requirement for active interferometric stabilization, which makes it an ideal candidate for a variety of applications, in particular those requiring indistinguishable photons.

8.
Phys Rev Lett ; 121(8): 080403, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-30192604

RESUMO

In this Letter, we present a cosmic Bell experiment with polarization-entangled photons, in which measurement settings were determined based on real-time measurements of the wavelength of photons from high-redshift quasars, whose light was emitted billions of years ago; the experiment simultaneously ensures locality. Assuming fair sampling for all detected photons and that the wavelength of the quasar photons had not been selectively altered or previewed between emission and detection, we observe statistically significant violation of Bell's inequality by 9.3 standard deviations, corresponding to an estimated p value of ≲7.4×10^{-21}. This experiment pushes back to at least ∼7.8 Gyr ago the most recent time by which any local-realist influences could have exploited the "freedom-of-choice" loophole to engineer the observed Bell violation, excluding any such mechanism from 96% of the space-time volume of the past light cone of our experiment, extending from the big bang to today.

9.
Phys Rev Lett ; 120(3): 030501, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400544

RESUMO

We perform decoy-state quantum key distribution between a low-Earth-orbit satellite and multiple ground stations located in Xinglong, Nanshan, and Graz, which establish satellite-to-ground secure keys with ∼kHz rate per passage of the satellite Micius over a ground station. The satellite thus establishes a secure key between itself and, say, Xinglong, and another key between itself and, say, Graz. Then, upon request from the ground command, Micius acts as a trusted relay. It performs bitwise exclusive or operations between the two keys and relays the result to one of the ground stations. That way, a secret key is created between China and Europe at locations separated by 7600 km on Earth. These keys are then used for intercontinental quantum-secured communication. This was, on the one hand, the transmission of images in a one-time pad configuration from China to Austria as well as from Austria to China. Also, a video conference was performed between the Austrian Academy of Sciences and the Chinese Academy of Sciences, which also included a 280 km optical ground connection between Xinglong and Beijing. Our work clearly confirms the Micius satellite as a robust platform for quantum key distribution with different ground stations on Earth, and points towards an efficient solution for an ultralong-distance global quantum network.

10.
Nature ; 489(7415): 269-73, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22951967

RESUMO

The quantum internet is predicted to be the next-generation information processing platform, promising secure communication and an exponential speed-up in distributed computation. The distribution of single qubits over large distances via quantum teleportation is a key ingredient for realizing such a global platform. By using quantum teleportation, unknown quantum states can be transferred over arbitrary distances to a party whose location is unknown. Since the first experimental demonstrations of quantum teleportation of independent external qubits, an internal qubit and squeezed states, researchers have progressively extended the communication distance. Usually this occurs without active feed-forward of the classical Bell-state measurement result, which is an essential ingredient in future applications such as communication between quantum computers. The benchmark for a global quantum internet is quantum teleportation of independent qubits over a free-space link whose attenuation corresponds to the path between a satellite and a ground station. Here we report such an experiment, using active feed-forward in real time. The experiment uses two free-space optical links, quantum and classical, over 143 kilometres between the two Canary Islands of La Palma and Tenerife. To achieve this, we combine advanced techniques involving a frequency-uncorrelated polarization-entangled photon pair source, ultra-low-noise single-photon detectors and entanglement-assisted clock synchronization. The average teleported state fidelity is well beyond the classical limit of two-thirds. Furthermore, we confirm the quality of the quantum teleportation procedure without feed-forward by complete quantum process tomography. Our experiment verifies the maturity and applicability of such technologies in real-world scenarios, in particular for future satellite-based quantum teleportation.

11.
Proc Natl Acad Sci U S A ; 112(46): 14202-5, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26578764

RESUMO

As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

12.
Phys Rev Lett ; 118(6): 060401, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234500

RESUMO

Bell's theorem states that some predictions of quantum mechanics cannot be reproduced by a local-realist theory. That conflict is expressed by Bell's inequality, which is usually derived under the assumption that there are no statistical correlations between the choices of measurement settings and anything else that can causally affect the measurement outcomes. In previous experiments, this "freedom of choice" was addressed by ensuring that selection of measurement settings via conventional "quantum random number generators" was spacelike separated from the entangled particle creation. This, however, left open the possibility that an unknown cause affected both the setting choices and measurement outcomes as recently as mere microseconds before each experimental trial. Here we report on a new experimental test of Bell's inequality that, for the first time, uses distant astronomical sources as "cosmic setting generators." In our tests with polarization-entangled photons, measurement settings were chosen using real-time observations of Milky Way stars while simultaneously ensuring locality. Assuming fair sampling for all detected photons, and that each stellar photon's color was set at emission, we observe statistically significant ≳7.31σ and ≳11.93σ violations of Bell's inequality with estimated p values of ≲1.8×10^{-13} and ≲4.0×10^{-33}, respectively, thereby pushing back by ∼600 years the most recent time by which any local-realist influences could have engineered the observed Bell violation.

13.
Proc Natl Acad Sci U S A ; 110(4): 1221-6, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23288900

RESUMO

The counterintuitive features of quantum physics challenge many common-sense assumptions. In an interferometric quantum eraser experiment, one can actively choose whether or not to erase which-path information (a particle feature) of one quantum system and thus observe its wave feature via interference or not by performing a suitable measurement on a distant quantum system entangled with it. In all experiments performed to date, this choice took place either in the past or, in some delayed-choice arrangements, in the future of the interference. Thus, in principle, physical communications between choice and interference were not excluded. Here, we report a quantum eraser experiment in which, by enforcing Einstein locality, no such communication is possible. This is achieved by independent active choices, which are space-like separated from the interference. Our setup employs hybrid path-polarization entangled photon pairs, which are distributed over an optical fiber link of 55 m in one experiment, or over a free-space link of 144 km in another. No naive realistic picture is compatible with our results because whether a quantum could be seen as showing particle- or wave-like behavior would depend on a causally disconnected choice. It is therefore suggestive to abandon such pictures altogether.

14.
Phys Rev Lett ; 115(25): 250401, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722905

RESUMO

Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74×10^{-31}, corresponding to an 11.5 standard deviation effect.

15.
Nature ; 501(7465): 37-8, 2013 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24005408
16.
Opt Express ; 21(6): 6707-17, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546052

RESUMO

Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Fótons , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento
17.
Proc Natl Acad Sci U S A ; 107(46): 19708-13, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041665

RESUMO

Bell's theorem shows that local realistic theories place strong restrictions on observable correlations between different systems, giving rise to Bell's inequality which can be violated in experiments using entangled quantum states. Bell's theorem is based on the assumptions of realism, locality, and the freedom to choose between measurement settings. In experimental tests, "loopholes" arise which allow observed violations to still be explained by local realistic theories. Violating Bell's inequality while simultaneously closing all such loopholes is one of the most significant still open challenges in fundamental physics today. In this paper, we present an experiment that violates Bell's inequality while simultaneously closing the locality loophole and addressing the freedom-of-choice loophole, also closing the latter within a reasonable set of assumptions. We also explain that the locality and freedom-of-choice loopholes can be closed only within nondeterminism, i.e., in the context of stochastic local realism.

18.
Opt Express ; 20(21): 23126-37, 2012 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-23188277

RESUMO

We present a high-fidelity quantum teleportation experiment over a high-loss free-space channel between two laboratories. We teleported six states of three mutually unbiased bases and obtained an average state fidelity of 0.82(1), well beyond the classical limit of 2/3. With the obtained data, we tomographically reconstructed the process matrices of quantum teleportation. The free-space channel attenuation of 31 dB corresponds to the estimated attenuation regime for a down-link from a low-earth-orbit satellite to a ground station. We also discussed various important technical issues for future experiments, including the dark counts of single-photon detectors, coincidence-window width etc. Our experiment tested the limit of performing quantum teleportation with state-of-the-art resources. It is an important step towards future satellite-based quantum teleportation and paves the way for establishing a worldwide quantum communication network.


Assuntos
Dispositivos Ópticos , Telecomunicações/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Teoria Quântica , Espalhamento de Radiação
19.
Opt Express ; 20(9): 9640-9, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22535055

RESUMO

We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.


Assuntos
Lasers Semicondutores , Iluminação/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Fótons
20.
Nat Commun ; 13(1): 6134, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253474

RESUMO

Reliable long-distance distribution of entanglement is a key technique for many quantum applications, most notably quantum key distribution. Here, we present a continuously working, trusted-node free international link between Austria and Slovakia, directly distributing polarization-entangled photon pairs via 248 km of deployed telecommunication fiber. Despite 79 dB loss, we observe stable detected pair rates of 9 s-1 over 110 h. We mitigate multi-pair detections with strict temporal filtering, enabled by nonlocal compensation of chromatic dispersion and superconducting nanowire detectors. Fully automatized active polarization stabilization keeps the entangled state's visibility at 86% for altogether 82 h. In a quantum cryptography context, this corresponds to an asymptotic secure key rate of 1.4 bits/s and 258 kbit of total key, considering finite-key effects. Our work paves the way for low-maintenance, ultra-stable quantum communication over long distances, independent of weather conditions and time of day, thus constituting an important step towards the quantum internet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA