Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Blood ; 139(19): 2972-2982, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35148539

RESUMO

The prothrombinase complex processes prothrombin to thrombin through sequential cleavage at Arg320 followed by Arg271 when cofactor, factor (f) Va, protease, fXa, and substrate, prothrombin, are all bound to the same membrane surface. In the absence of the membrane or cofactor, cleavage occurs in the opposite order. For the less favorable cleavage site at Arg320 to be cleaved first, it is thought that prothrombin docks on fVa in a way that presents Arg320 and hides Arg271 from the active site of fXa. Based on the crystal structure of the prothrombinase complex from the venom of the Australian eastern brown snake, pseutarin C, we modeled an initial prothrombin docking mode, which involved an interaction with discrete portions of the A1 and A2 domains of fV and the loop connecting the 2 domains, known as the a1-loop. We interrogated the proposed interface by site-directed PEGylation and by swapping the a1-loop in pseutarin C with that of human fV and fVIII and measuring the effect on rate and pathway of thrombin generation. PEGylation of residues within our proposed binding site greatly reduced the rate of thrombin generation, without affecting the pathway, whereas those outside the proposed interface had no effect. PEGylation of residues within the a1-loop also reduced the rate of thrombin generation. The sequence of the a1-loop was found to play a critical role in prothrombin binding and in the presentation of Arg320 for initial cleavage.


Assuntos
Venenos Elapídicos , Protrombina , Trombina , Austrália , Sítios de Ligação , Fator Va/metabolismo , Fator Xa/metabolismo , Humanos , Protrombina/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
2.
Soft Matter ; 20(25): 4886-4894, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38860646

RESUMO

Biogenic CaCO3 formation is regulated by crystallization proteins during crystal growth. Interactions of proteins with nascent mineral surfaces trigger proteins to be incorporated into the crystal lattice. As a result of incorporation, these intracrystalline proteins are protected in the lattice, an example of which is ancient eggshell proteins that have persisted in CaCO3 for thousands of years even under harsh environmental conditions. OC17 is an eggshell protein known to interact with CaCO3 during eggshell formation during which OC17 becomes incorporated into the lattice. Understanding protein incorporation into CaCO3 could offer insights into protein stability inside crystals. Here, we study the protection of OC17 in the CaCO3 lattice. Using thermogravimetric analysis we show that the effect of temperature on intracrystalline proteins of eggshells is negligible below 250 °C. Next, we show that lattice incorporation protects the OC17 structure despite a heat-treatment step that is shown to denature the protein. Because incorporated proteins need to be released from crystals, we verify metal chelation as a safe crystal dissolution method to avoid protein denaturation during reconstitution. Finally, we optimize the recombinant expression of OC17 which could allow engineering OC17 for engineered intracrystalline entrapment studies.


Assuntos
Carbonato de Cálcio , Cristalização , Proteínas do Ovo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Proteínas do Ovo/química , Proteínas do Ovo/metabolismo , Animais , Temperatura
3.
Proteins ; 84(11): 1681-1689, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27488615

RESUMO

Clostridium perfringens spores employ two peptidoglycan lysins to degrade the spore cortex during germination. SleC initiates cortex hydrolysis to generate cortical fragments that are degraded further by the muramidase SleM. Here, we present the crystal structure of the C. perfringens S40 SleM protein at 1.8 Å. SleM comprises an N-terminal catalytic domain that adopts an irregular α/ß-barrel fold that is common to GH25 family lysozymes, plus a C-terminal fibronectin type III domain. The latter is involved in forming the SleM dimer that is evident in both the crystal structure and in solution. A truncated form of SleM that lacks the FnIII domain shows reduced activity against spore sacculi indicating that this domain may have a role in facilitating the position of substrate with respect to the enzyme's active site. Proteins 2016; 84:1681-1689. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Bactérias/química , Clostridium perfringens/química , Muramidase/química , Peptidoglicano/química , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Clostridium perfringens/enzimologia , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Domínio de Fibronectina Tipo III , Expressão Gênica , Hidrólise , Modelos Moleculares , Muramidase/genética , Muramidase/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
Proteins ; 83(10): 1914-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26219275

RESUMO

The crystal structure of the C-terminal domain of the Bacillus megaterium YpeB protein has been solved by X-ray crystallography to 1.80-Å resolution. The full-length protein is essential in stabilising the SleB cortex lytic enzyme in Bacillus spores, and may have a role in regulating SleB activity during spore germination. The YpeB-C crystal structure comprises three tandemly repeated PepSY domains, which are aligned to form an extended laterally compressed molecule. A predominantly positively charged region located in the second PepSY domain may provide a site for protein interactions that are important in stabilising SleB and YpeB within the spore.


Assuntos
Bacillus megaterium/enzimologia , Proteínas de Bactérias/química , Esporos Bacterianos/enzimologia , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína
5.
Proteins ; 83(10): 1787-99, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26190134

RESUMO

A major event in the germination of Bacillus spores concerns hydrolysis of the cortical peptidoglycan that surrounds the spore protoplast, the integrity of which is essential for maintenance of dormancy. Cortex degradation is initiated in all species of Bacillus spores by the combined activity of two semi-redundant cortex-lytic enzymes, SleB and CwlJ. A third enzyme, SleL, which has N-acetylglucosaminidase activity, cleaves peptidoglycan fragments generated by SleB and CwlJ. Here we present crystal structures of B. cereus and B. megaterium SleL at 1.6 angstroms and 1.7 angstroms, respectively. The structures were determined with a view to identifying the structural basis of differences in catalytic efficiency between the respective enzymes. The catalytic (α/ß)8 -barrel cores of both enzymes are highly conserved from a structural perspective, including the spatial distribution of the catalytic residues. Both enzymes are equipped with two N-terminal peptidoglycan-binding LysM domains, which are also structurally highly conserved. However, the topological arrangement of the respective enzymes second LysM domain is markedly different, and this may account for differences in catalytic rates by impacting upon the position of the active sites with respect to their substrates. A chimeric enzyme comprising the B. megaterium SleL catalytic domain plus B. cereus SleL LysM domains displayed enzymatic activity comparable to the native B. cereus protein, exemplifying the importance of the LysM domains to SleL function. Similarly, the reciprocal construct, comprising the B. cereus SleL catalytic domain with B. megaterium SleL LysM domains, showed reduced activity compared with native B. cereus SleL.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/enzimologia , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/genética , Cristalografia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
6.
J Bacteriol ; 196(5): 1045-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24375103

RESUMO

Previous work demonstrated that Bacillus megaterium QM B1551 spores that are null for the sleB and cwlJ genes, which encode cortex-lytic enzymes (CLEs), either of which is required for efficient cortex hydrolysis in Bacillus spores, could germinate efficiently when complemented with a plasmid-borne copy of ypeB plus the nonlytic portion of sleB encoding the N-terminal domain of SleB (sleB(N)). The current study demonstrates that the defective germination phenotype of B. megaterium sleB cwlJ spores can partially be restored when they are complemented with plasmid-borne ypeB alone. However, efficient germination in this genetic background requires the presence of sleL, which in this species was suggested previously to encode a nonlytic epimerase. Recombinant B. megaterium SleL showed little, or no, activity against purified spore sacculi, cortical fragments, or decoated spore substrates. However, analysis of muropeptides generated by the combined activities of recombinant SleB and SleL against spore sacculi revealed that B. megaterium SleL is actually an N-acetylglucosaminidase, albeit with apparent reduced activity compared to that of the homologous Bacillus cereus protein. Additionally, decoated spores were induced to release a significant proportion of dipicolinic acid (DPA) from the spore core when incubated with recombinant SleL plus YpeB, although optimal DPA release required the presence of endogenous CLEs. The physiological basis that underpins this newly identified dependency between SleL and YpeB is not clear, since pulldown assays indicated that the proteins do not interact physically in vitro.


Assuntos
Bacillus megaterium/metabolismo , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/fisiologia , Bacillus megaterium/classificação , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrólise
7.
Biol Chem ; 395(10): 1233-41, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25153592

RESUMO

Thrombin is generated from prothrombin through cleavage at two sites by the prothrombinase complex. Prothrombinase is composed of a protease, factor (f) Xa, and a cofactor, fVa, which interact on negatively charged phospholipid surfaces and cleave prothrombin into thrombin 300 000 times faster than fXa alone. The balance between bleeding and thrombosis depends on the amount of thrombin produced, and this in turn depends on the function of the prothrombinase complex. How fXa and fVa interact and how improved prothrombin processing is conferred are of critical importance for understanding healthy and pathological blood clotting. Until recently, little structural information was available, and molecular models were built on partial structures with assembly guided by biochemical data. Last year our group published a crystal structure of a prothrombinase complex from the venom of the Australian Eastern Brown snake (known as Pseutarin C). Here we use the crystal structure of Pseutarin C as a starting point for homology modelling and assembly of the full human prothrombinase complex. The interface is complementary in shape and charge, and is consistent with much of the published biochemical data. The model of human prothrombinase presented here provides a powerful resource for contextualizing previous data and for designing future experiments.


Assuntos
Venenos Elapídicos/química , Fator V/química , Fator Xa/química , Animais , Cristalografia por Raios X , Fator Va/química , Humanos , Modelos Moleculares , Serpentes
8.
J Bacteriol ; 195(13): 3045-53, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23625848

RESUMO

Spores of Bacillus megaterium QM B1551 germinate rapidly when exposed to a number of single-trigger germinant compounds, including glucose, proline, leucine, and certain inorganic salts. However, spores of strain PV361, a plasmidless QM B1551 derivative that lacks the GerU germinant receptor (GR) responsible for mediating germination in response to single-trigger compounds, can germinate efficiently when incubated in nutritionally rich media, presumably via activation of additional germinant receptors. In this work, we have identified five chromosomally encoded GRs and attempted to characterize, by mutational analysis, germinant recognition profiles associated with the respective receptors in strain PV361. Of strains engineered with single GR insertion-deletions, only GerK-null spores displayed significant defective germination phenotypes when incubated in 5% (wt/vol) beef extract or plated on rich solid medium. Cumulative decreases in viability were observed in GerK-null spores that also lacked GerA or GerA2, indicating that these GRs, which exerted little effect on spore germination when disrupted individually, have a degree of functionality. Unexpectedly, an efficient germination response to combinations of germinants was restored in GerA(+) spores, which lack all other functional GRs, providing evidence for negative cooperativity between some GRs within the spore. Tetrazolium-based germinative assays conducted with purified spores indicated that these newly characterized B. megaterium GRs are cognate for a wide and chemically diverse range of germinant molecules, but unlike GerU, can only be induced to trigger germination when stimulated by at least two different germinants.


Assuntos
Bacillus megaterium/metabolismo , Bacillus megaterium/fisiologia , Proteínas de Bactérias/metabolismo , Esporos Bacterianos/metabolismo , Esporos Bacterianos/fisiologia , Bacillus megaterium/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Esporos Bacterianos/genética
9.
J Bacteriol ; 195(11): 2530-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23543708

RESUMO

Germination of Bacillus spores requires degradation of a modified layer of peptidoglycan (PG) termed the spore cortex by two redundant cortex-lytic enzymes (CLEs), CwlJ and SleB, plus SleB's partner protein, YpeB. In this study, in vitro and in vivo analyses have been used to clarify the roles of individual SleB and YpeB domains in PG degradation. Purified mature Bacillus cereus SleB without its signal sequence (SleB(M)) and the SleB C-terminal catalytic domain (SleB(C)) efficiently triggered germination of decoated Bacillus megaterium and Bacillus subtilis spores lacking endogenous CLEs; previously, SleB's N-terminal domain (SleB(N)) was shown to bind PG but have no enzymatic activity. YpeB lacking its putative membrane anchoring sequence (YpeB(M)) or its N- and C-terminal domains (YpeB(N) and YpeB(C)) alone did not exhibit degradative activity, but YpeB(N) inhibited SleB(M) and SleB(C) activity in vitro. The severe germination defect of B. subtilis cwlJ sleB or cwlJ sleB ypeB spores was complemented by ectopic expression of full-length sleB [sleB(FL)] and ypeB [ypeB(FL)], but normal levels of SleB(FL) in spores required normal spore levels of YpeB(FL) and vice versa. sleB(FL) or ypeB(FL) alone, sleB(FL) plus ypeB(C) or ypeB(N), and sleB(C) or sleB(N) plus ypeB(FL) did not complement the cortex degradation defect in cwlJ sleB ypeB spores. In addition, ectopic expression of sleB(FL) or cwlJ(FL) with a Glu-to-Gln mutation in a predicted active-site residue failed to restore the germination of cwlJ sleB spores, supporting the role of this invariant glutamate as the key catalytic residue in SleB and CwlJ.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/metabolismo , Regulação Enzimológica da Expressão Gênica , Hidrolases/metabolismo , Peptidoglicano/metabolismo , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Amidoidrolases/metabolismo , Substituição de Aminoácidos , Bacillus/genética , Bacillus/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrolases/genética , Hidrolases/isolamento & purificação , Isoenzimas , Viabilidade Microbiana , Mutação , Estrutura Terciária de Proteína , Esporos Bacterianos
10.
J Bacteriol ; 192(20): 5378-89, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20729357

RESUMO

Molecular-genetic and muropeptide analysis techniques have been applied to examine the function in vivo of the Bacillus megaterium QM B1551 SleB and SleL proteins. In common with Bacillus subtilis and Bacillus anthracis, the presence of anhydromuropeptides in B. megaterium germination exudates, which is indicative of lytic transglycosylase activity, is associated with an intact sleB structural gene. B. megaterium sleB cwlJ double mutant strains complemented with engineered SleB variants in which the predicted N- or C-terminal domain has been deleted (SleB-ΔN or SleB-ΔC) efficiently initiate and hydrolyze the cortex, generating anhydromuropeptides in the process. Additionally, sleB cwlJ strains complemented with SleB-ΔN or SleB-ΔC, in which glutamate and aspartate residues have individually been changed to alanine, all retain the ability to hydrolyze the cortex to various degrees during germination, with concomitant release of anhydromuropeptides to the surrounding medium. These data indicate that while the presence of either the N- or C-terminal domain of B. megaterium SleB is sufficient for initiation of cortex hydrolysis and the generation of anhydromuropeptides, the perceived lytic transglycosylase activity may be derived from an enzyme(s), perhaps exclusively or in addition to SleB, which has yet to be identified. B. megaterium SleL appears to be associated with the epimerase-type activity observed previously in B. subtilis, differing from the glucosaminidase function that is apparent in B. cereus/B. anthracis.


Assuntos
Bacillus megaterium/genética , Proteínas de Bactérias/metabolismo , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Bacillus megaterium/enzimologia , Bacillus megaterium/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Conformação Proteica , Esporos Bacterianos/fisiologia
11.
J Biotechnol ; 127(2): 322-34, 2007 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16945442

RESUMO

The effect of solid substrates, inoculum and incubation time were studied using response surface methodology (RSM) for the production of polygalacturonase enzyme and spores in solid-state fermentation using Aspergillus sojae ATCC 20235. Two-stage optimization procedure was applied using D-optimal and face-centered central composite design (CCD). Crushed maize was chosen as the solid substrate, for maximum polygalacturonase enzyme activity based on D-optimal design. Inoculum and incubation time were determined to have significant effect on enzyme activity and total spore (p<0.01) based on the results of CCD. A second order polynomial regression model was fitted and was found adequate for individual responses. All two models provided an adequate R(2) of 0.9963 (polygalacturonase) and 0.9806 (spores) (p<0.001). The individual optimum values of inoculum and incubation time for maximum production of the two responses were 2 x 10(7) total spores and 5-6 days. The predicted enzyme activity (30.55 U/g solid) and spore count (2.23 x 10(7)spore/ml) were very close to the actual values obtained experimentally (29.093 U/g solid and 2.31 x 10(7)spore/ml, respectively). The overall optimum region considering the two responses together, overlayed with the individual optima. Solid-state fermentation provided 48% more polygalacturonase activity compared to submerged fermentation under individually optimized conditions.


Assuntos
Aspergillus/enzimologia , Fermentação , Poligalacturonase/biossíntese , Análise de Variância , Aspergillus/genética , Poligalacturonase/genética , Análise de Regressão , Reprodutibilidade dos Testes , Esporos Fúngicos/enzimologia
12.
J Chromatogr A ; 1418: 83-93, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26422306

RESUMO

The green fluorescent protein (GFP) is a useful indicator in a broad range of applications including cell biology, gene expression and biosensing. However, its full potential is hampered by the lack of a selective, mild and low-cost purification scheme. In order to address this demand, a novel adsorbent was developed as a generic platform for the purification of GFP or GFP fusion proteins, giving GFP a dual function as reporter and purification tag. After screening a solid-phase combinatorial library of small synthetic ligands based on the Ugi-reaction, the lead ligand (A4C7) selectively recovered GFP with 94% yield and 94% purity under mild conditions and directly from Escherichia coli extracts. Adsorbents containing the ligand A4C7 maintained the selectivity to recover other proteins fused to GFP. The performance of A4C7 adsorbents was compared with two commercially available methods (immunoprecipitation and hydrophobic interaction chromatography), confirming the new adsorbent as a low-cost viable alternative for GFP purification.


Assuntos
Proteínas de Fluorescência Verde/isolamento & purificação , Ligantes , Adsorção , Técnicas de Química Combinatória , Custos e Análise de Custo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Fluorescência Verde/economia , Proteínas de Fluorescência Verde/genética , Modelos Moleculares , Pirenos/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA