RESUMO
Dissecting the evolution of memory B cells (MBCs) against SARS-CoV-2 is critical for understanding antibody recall upon secondary exposure. Here, we used single-cell sequencing to profile SARS-CoV-2-reactive B cells in 38 COVID-19 patients. Using oligo-tagged antigen baits, we isolated B cells specific to the SARS-CoV-2 spike, nucleoprotein (NP), open reading frame 8 (ORF8), and endemic human coronavirus (HCoV) spike proteins. SARS-CoV-2 spike-specific cells were enriched in the memory compartment of acutely infected and convalescent patients several months post symptom onset. With severe acute infection, substantial populations of endemic HCoV-reactive antibody-secreting cells were identified and possessed highly mutated variable genes, signifying preexisting immunity. Finally, MBCs exhibited pronounced maturation to NP and ORF8 over time, especially in older patients. Monoclonal antibodies against these targets were non-neutralizing and non-protective in vivo. These findings reveal antibody adaptation to non-neutralizing intracellular antigens during infection, emphasizing the importance of vaccination for inducing neutralizing spike-specific MBCs.
Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Linfócitos B/imunologia , COVID-19/imunologia , Interações Hospedeiro-Patógeno/imunologia , Epitopos Imunodominantes/imunologia , SARS-CoV-2/imunologia , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/genética , Linfócitos B/metabolismo , Biologia Computacional/métodos , Reações Cruzadas/imunologia , Mapeamento de Epitopos , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/genética , Humanos , Epitopos Imunodominantes/genética , Memória Imunológica , Masculino , Testes de Neutralização , Análise de Célula Única/métodos , Glicoproteína da Espícula de Coronavírus/imunologia , TranscriptomaRESUMO
Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.
Assuntos
Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Orthomyxoviridae/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Anticorpos Amplamente Neutralizantes/genética , Reações Cruzadas , Epitopos de Linfócito B/imunologia , Genes de Imunoglobulinas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Orthomyxoviridae/classificação , Domínios Proteicos , Hipermutação Somática de ImunoglobulinaRESUMO
Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.
Assuntos
Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Epitopos/química , Epitopos/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Células B de Memória/imunologiaRESUMO
Vaccination is the best measure of protection against influenza virus infection. Vaccine-induced antibody responses target mainly the hemagglutinin (HA) surface glycoprotein, composed of the head and the stalk domains. Recently two novel vaccine platforms have been developed for seasonal influenza vaccination: a recombinant HA vaccine produced in insect cells (Flublok) and Flucelvax, prepared from virions produced in mammalian cells. In order to compare the fine specificity of the antibodies induced by these two novel vaccine platforms, we characterized 42 Flublok-induced monoclonal antibodies (MAbs) and 38 Flucelvax-induced MAbs for avidity, cross-reactivity, and any selectivity toward the head versus the stalk domain. These studies revealed that Flublok induced a greater proportion of MAbs targeting epitopes near the receptor-binding domain on HA head (hemagglutinin inhibition-positive MAbs) than Flucelvax, while the two vaccines induced similar low frequencies of stalk-reactive MAbs. Finally, mice immunized with Flublok and Flucelvax also induced similar frequencies of stalk-reactive antibody-secreting cells, showing that HA head immunodominance is independent of immune memory bias. Collectively, our results suggest that these vaccine formulations are similarly immunogenic but differ in the preferences of the elicited antibodies toward the receptor-binding domain on the HA head.IMPORTANCE There are ongoing efforts to increase the efficacy of influenza vaccines and to promote production strategies that can rapidly respond to newly emerging viruses. It is important to understand if current alternative seasonal vaccines, such as Flublok and Flucelvax, that use alternate production strategies can induce protective influenza-specific antibodies and to evaluate what type of epitopes are targeted by distinct vaccine formulations.
Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Vacinas de Produtos Inativados/imunologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Anticorpos Neutralizantes/imunologia , Estudos de Coortes , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Homologia de Sequência , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Adulto JovemRESUMO
The generation of high affinity antibodies is a crucial aspect of immunity induced by vaccination or infection. Investigation into the B cells that produce these antibodies grants key insights into the effectiveness of novel immunogens to induce a lasting protective response against endemic or pandemic pathogens, such as influenza viruses, human immunodeficiency virus, or severe acute respiratory syndrome coronavirus-2. However, humoral immunity has largely been studied at the serological level, limiting our knowledge on the specificity and function of B cells recruited to respond to pathogens. In this review, we cover a number of recent innovations in the field that have increased our ability to connect B cell function to the B cell repertoire and antigen specificity. Moreover, we will highlight recent advances in the development of both ex vivo and in vivo models to study human B cell responses. Together, the technologies highlighted in this review can be used to help design and validate new vaccine designs and platforms.
RESUMO
Antibodies are critical for providing protection against influenza virus infections. However, protective humoral immunity against influenza viruses is limited by the antigenic drift and shift of the major surface glycoproteins, hemagglutinin and neuraminidase. Importantly, people are exposed to influenza viruses throughout their life and tend to reuse memory B cells from prior exposure to generate antibodies against new variants. Despite this, people tend to recall memory B cells against constantly evolving variable epitopes or non-protective antigens, as opposed to recalling them against broadly neutralizing epitopes of hemagglutinin. In this review, we discuss the factors that impact the generation and recall of memory B cells against distinct viral antigens, as well as the immunological limitations preventing broadly neutralizing antibody responses. Lastly, we discuss how next-generation vaccine platforms can potentially overcome these obstacles to generate robust and long-lived protection against influenza A viruses.
Assuntos
Linfócitos B/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Influenza Humana/imunologia , Orthomyxoviridae/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Linfócitos B/metabolismo , Resistência à Doença , Epitopos de Linfócito B/imunologia , Humanos , Memória Imunológica , Vacinas contra Influenza/imunologia , Influenza Humana/metabolismo , Influenza Humana/prevenção & controle , Ativação Linfocitária , Infecções por Orthomyxoviridae , Linfócitos T/imunologia , Linfócitos T/metabolismoRESUMO
Influenza viruses grown in eggs for the purposes of vaccine generation often acquire mutations during egg adaptation or possess different glycosylation patterns than viruses circulating among humans. Here, we report that seasonal influenza virus vaccines possess an egg-derived glycan that is an antigenic decoy, with egg-binding MAbs reacting with a sulfated N-acetyllactosamine (LacNAc). Half of subjects that received an egg-grown vaccine mounted an antibody response against this egg-derived antigen. Egg-binding monoclonal antibodies specifically bind viruses grown in eggs, but not viruses grown in other chicken-derived cells, suggesting that only egg-grown vaccines can induce antiegg antibodies. Notably, antibodies against the egg antigen utilized a restricted antibody repertoire and possessed features of natural antibodies, as most antibodies were IgM and had a simple heavy-chain complementarity-determining region 3. By analyzing a public data set of influenza virus vaccine-induced plasmablasts, we discovered egg-binding public clonotypes that were shared across studies. Together, this study shows that egg-grown vaccines can induce antibodies against an egg-associated glycan, which may divert the host immune response away from protective epitopes.
Assuntos
Amino Açúcares/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Ovos/análise , Vírus da Influenza A/imunologia , Vacinas contra Influenza/análise , Vacinas contra Influenza/imunologia , Polissacarídeos/imunologia , Amino Açúcares/química , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Antígenos Virais/química , Antígenos Virais/metabolismo , Linhagem Celular , Galinhas , Epitopos , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Polissacarídeos/metabolismoRESUMO
Broadly neutralizing antibodies are critical for protection against both drifted and shifted influenza viruses. Here, we reveal that first exposure to the 2009 pandemic H1N1 influenza virus recalls memory B cells that are specific to the conserved receptor-binding site (RBS) or lateral patch epitopes of the hemagglutinin (HA) head domain. Monoclonal antibodies (mAbs) generated against these epitopes are broadly neutralizing against H1N1 viruses spanning 40 years of viral evolution and provide potent protection in vivo. Lateral patch-targeting antibodies demonstrated near universal binding to H1 viruses, and RBS-binding antibodies commonly cross-reacted with H3N2 viruses and influenza B viruses. Lateral patch-targeting mAbs were restricted to expressing the variable heavy-chain gene VH3-23 with or without the variable kappa-chain gene VK1-33 and often had a Y-x-R motif within the heavy-chain complementarity determining region 3 to make key contacts with HA. Moreover, lateral patch antibodies that used both VH3-23 and VK1-33 maintained neutralizing capability with recent pH1N1 strains that acquired mutations near the lateral patch. RBS-binding mAbs used a diverse repertoire but targeted the RBS epitope similarly and made extensive contacts with the major antigenic site Sb. Together, our data indicate that RBS- and lateral patch-targeting clones are abundant within the human memory B cell pool, and universal vaccine strategies should aim to drive antibodies against both conserved head and stalk epitopes.
Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Anticorpos Neutralizantes , Anticorpos Antivirais , Anticorpos Amplamente Neutralizantes , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Hemaglutininas , Humanos , Vírus da Influenza A Subtipo H3N2RESUMO
Multimodal advances in single-cell sequencing have enabled the simultaneous quantification of cell surface protein expression alongside unbiased transcriptional profiling. Here, we present LinQ-View, a toolkit designed for multimodal single-cell data visualization and analysis. LinQ-View integrates transcriptional and cell surface protein expression profiling data to reveal more accurate cell heterogeneity and proposes a quantitative metric for cluster purity assessment. Through comparison with existing multimodal methods on multiple public CITE-seq datasets, we demonstrate that LinQ-View efficiently generates accurate cell clusters, especially in CITE-seq data with routine numbers of surface protein features, by preventing variations in a single surface protein feature from affecting results. Finally, we utilized this method to integrate single-cell transcriptional and protein expression data from SARS-CoV-2-infected patients, revealing antigen-specific B cell subsets after infection. Our results suggest LinQ-View could be helpful for multimodal analysis and purity assessment of CITE-seq datasets that target specific cell populations (e.g., B cells).
Assuntos
COVID-19 , Transcriptoma , Humanos , Transcriptoma/genética , Proteínas de Membrana , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise por Conglomerados , COVID-19/genética , SARS-CoV-2/genéticaRESUMO
Several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have arisen that exhibit increased viral transmissibility and partial evasion of immunity induced by natural infection and vaccination. To address the specific antibody targets that were affected by recent viral variants, we generated 43 monoclonal antibodies (mAbs) from 10 convalescent donors that bound three distinct domains of the SARS-CoV-2 spike. Viral variants harboring mutations at K417, E484, and N501 could escape most of the highly potent antibodies against the receptor binding domain (RBD). Despite this, we identified 12 neutralizing mAbs against three distinct regions of the spike protein that neutralize SARS-CoV-2 and variants of concern (VOCs), including B.1.1.7 (alpha), P.1 (gamma), and B.1.617.2 (delta). Notably, antibodies targeting distinct epitopes could neutralize discrete variants, suggesting that different variants may have evolved to disrupt the binding of particular neutralizing antibody classes. These results underscore that humans exposed to the first pandemic wave of prototype SARS-CoV-2 possess neutralizing antibodies against current variants and that it is critical to induce antibodies targeting multiple distinct epitopes of the spike that can neutralize emerging variants of concern. IMPORTANCE We describe the binding and neutralization properties of a new set of human monoclonal antibodies derived from memory B cells of 10 coronavirus disease 2019 (COVID-19) convalescent donors in the first pandemic wave of prototype SARS-CoV-2. There were 12 antibodies targeting distinct epitopes on spike, including two sites on the RBD and one on the N-terminal domain (NTD), that displayed cross-neutralization of VOCs, for which distinct antibody targets could neutralize discrete variants. This work underlines that natural infection by SARS-CoV-2 induces effective cross-neutralization against only some VOCs and supports the need for COVID-19 vaccination for robust induction of neutralizing antibodies targeting multiple epitopes of the spike protein to combat the current SARS-CoV-2 VOCs and any others that might emerge in the future.
Assuntos
Anticorpos Antivirais/sangue , Anticorpos Amplamente Neutralizantes/sangue , COVID-19/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adulto , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , Convalescença , Epitopos/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes de Neutralização , Pandemias , Plasma/imunologia , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genéticaRESUMO
Humans are repeatedly exposed to variants of influenza virus throughout their lifetime. As a result, preexisting influenza-specific memory B cells can dominate the response after infection or vaccination. Memory B cells recalled by adulthood exposure are largely reactive to conserved viral epitopes present in childhood strains, posing unclear consequences on the ability of B cells to adapt to and neutralize newly emerged strains. We sought to investigate the impact of preexisting immunity on generation of protective antibody responses to conserved viral epitopes upon influenza virus infection and vaccination in humans. We accomplished this by characterizing monoclonal antibodies (mAbs) from plasmablasts, which are predominantly derived from preexisting memory B cells. We found that, whereas some influenza infection-induced mAbs bound conserved and neutralizing epitopes on the hemagglutinin (HA) stalk domain or neuraminidase, most of the mAbs elicited by infection targeted non-neutralizing epitopes on nucleoprotein and other unknown antigens. Furthermore, most infection-induced mAbs had equal or stronger affinity to childhood strains, indicating recall of memory B cells from childhood exposures. Vaccination-induced mAbs were similarly induced from past exposures and exhibited substantial breadth of viral binding, although, in contrast to infection-induced mAbs, they targeted neutralizing HA head epitopes. Last, cocktails of infection-induced mAbs displayed reduced protective ability in mice compared to vaccination-induced mAbs. These findings reveal that both preexisting immunity and exposure type shape protective antibody responses to conserved influenza virus epitopes in humans. Natural infection largely recalls cross-reactive memory B cells against non-neutralizing epitopes, whereas vaccination harnesses preexisting immunity to target protective HA epitopes.
Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Adulto , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Influenza Humana/prevenção & controle , Camundongos , VacinaçãoRESUMO
Discovery of durable memory B cell (MBC) subsets against neutralizing viral epitopes is critical for determining immune correlates of protection from SARS-CoV-2 infection. Here, we identified functionally distinct SARS-CoV-2-reactive B cell subsets by profiling the repertoire of convalescent COVID-19 patients using a high-throughput B cell sorting and sequencing platform. Utilizing barcoded SARS-CoV-2 antigen baits, we isolated thousands of B cells that segregated into discrete functional subsets specific for the spike, nucleocapsid protein (NP), and open reading frame (ORF) proteins 7a and 8. Spike-specific B cells were enriched in canonical MBC clusters, and monoclonal antibodies (mAbs) from these cells were potently neutralizing. By contrast, B cells specific to ORF8 and NP were enriched in naïve and innate-like clusters, and mAbs against these targets were exclusively non-neutralizing. Finally, we identified that B cell specificity, subset distribution, and affinity maturation were impacted by clinical features such as age, sex, and symptom duration. Together, our data provide a comprehensive tool for evaluating B cell immunity to SARS-CoV-2 infection or vaccination and highlight the complexity of the human B cell response to SARS-CoV-2.
RESUMO
Influenza is a leading cause of death in the elderly, and the vaccine protects only a fraction of this population. A key aspect of antibody-mediated anti-influenza virus immunity is adaptation to antigenically distinct epitopes on emerging strains. We examined factors contributing to reduced influenza vaccine efficacy in the elderly and uncovered a dramatic reduction in the accumulation of de novo immunoglobulin gene somatic mutations upon vaccination. This reduction is associated with a significant decrease in the capacity of antibodies to target the viral glycoprotein, hemagglutinin (HA), and critical protective epitopes surrounding the HA receptor-binding domain. Immune escape by antigenic drift, in which viruses generate mutations in key antigenic epitopes, becomes highly exaggerated. Because of this reduced adaptability, most B cells activated in the elderly cohort target highly conserved but less potent epitopes. Given these findings, vaccines driving immunoglobulin gene somatic hypermutation should be a priority to protect elderly individuals.