Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(42): 14138-14145, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34649431

RESUMO

Free radicals, such as metabolic intermediates, reactive oxygen species, and metal enzymes, are key substances in organisms, although they can also cause various oxidative diseases. Thus, in vivo free radical imaging should be considered as the ultimate form of metabolic imaging. Unfortunately, electron spin resonance (ESR) imaging has inherent disadvantages, such as free radicals with large linewidths generating blurred images and the presence of two or more free radicals resulting in a complicated imaging procedure. Dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) is a noninvasive imaging method to visualize in vivo free radicals, theoretically, with the same resolution as the MRI anatomical resolution, and fixed low-field DNP-MRI provides unique information on oxidative diseases and cancer. However, the large gyromagnetic ratio of the electron spin, which is 660-fold greater than that of a proton, requires field cycling, wherein the external magnetic field should be varied during DNP-MRI observations. This causes difficulties in developing a DNP-MRI system for clinical purposes. We developed a novel field-cycling DNP-MRI system for a preclinical study. In the said system, the magnetic field is switched by rotationally moving two magnets, with a magnetic flux density of 0.3 T for MRI and 5 mT for ESR. The image quality was examined using various pulse sequences and ESR irradiation using nitroxyl radical as the phantom, and the optimum conditions were established. Using the system, we performed a preclinical study involving free radical imaging by placing the free radicals under the palm of a human hand.


Assuntos
Imageamento por Ressonância Magnética , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Humanos , Oxirredução , Imagens de Fantasmas
2.
Magn Reson Chem ; 56(4): 257-264, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29205482

RESUMO

Low-frequency electron spin resonance studies were performed for 2 mM concentration of deuterated permeable and impermeable nitroxyl spin probes, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and 3-carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy in pure water and various concentrations of corn oil solution. The electron spin resonance parameters such as the line width, hyperfine coupling constant, g factor, rotational correlation time, permeability, and partition parameter were estimated. The broadening of line width was observed for nitroxyl radicals in corn oil mixture. The rotational correlation time increases with increasing concentration of corn oil, which indicates the less mobile nature of spin probe in corn oil mixture. The membrane permeability and partition parameter values were estimated as a function of corn oil concentration, which reveals that the nitroxyl radicals permeate equally into the aqueous phase and oil phase at the corn oil concentration of 50%. The electron spin resonance spectra demonstrate the permeable and impermeable nature of nitroxyl spin probes. From these results, the corn oil concentration was optimized as 50% for phantom studies. In this work, the corn oil and pure water mixture phantom models with various viscosities correspond to plasma membrane, and whole blood membrane with different hematocrit levels was studied for monitoring the biological characteristics and their interactions with permeable nitroxyl spin probe. These results will be useful for the development of electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities in biomedical applications.

3.
J Liposome Res ; 28(2): 87-96, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27892752

RESUMO

In this work, the detailed studies of electron spin resonance (ESR) and overhauser-enhanced magnetic resonance imaging (OMRI) were carried out for permeable nitroxyl spin probe, MC-PROXYL as a function of agent concentration in liposomal solution. In order to compare the impermeable nature of nitroxyl radical, the study was also carried out only at 2 mM concentration of carboxy-PROXYL. The ESR parameters were estimated using L-band and 300 MHz ESR spectrometers. The line width broadening was measured as a function of agent concentration in liposomal solution. The estimated rotational correlation time is proportional to the agent concentration, which indicates that less mobile nature of nitroxyl spin probe in liposomal solution. The partition parameter and permeability values indicate that the diffusion of nitroxyl spin probe distribution into the lipid phase is maximum at 2 mM concentration of MC-PROXYL. The dynamic nuclear polarization (DNP) parameters such as DNP factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for 2 mM MC-PROXYL in 400 mM liposomal dispersion. The spin lattice relaxation time was shortened in liposomal solution, which leads to the high relaxivity. Reduction in coupling factor is due to less interaction between the electron and nuclear spins, which causes the reduction in enhancement. The leakage factor increases with increasing agent concentration. The increase in DNP enhancement was significant up to 2 mM in liposomal solution. These results paves the way for choosing optimum agent concentration and OMRI scan parameters used in intra and extra membrane water by loading the liposome vesicles with a lipid permeable nitroxyl spin probes in OMRI experiments.


Assuntos
Lipossomos/química , Óxidos de Nitrogênio/química , Marcadores de Spin , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Imageamento por Ressonância Magnética , Tamanho da Partícula , Permeabilidade , Pirrolidinas/química , Propriedades de Superfície , Água
4.
Magn Reson Chem ; 55(10): 909-916, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28444914

RESUMO

Detailed dynamic nuclear polarization and electron spin resonance studies were carried out for 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl,3-methoxycarbonyl-2,2,5,5-tetramethy pyrolidine-1-oxyl nitroxyl radicals and their corresponding deuterated nitroxyl radicals, used in Overhauser-enhanced magnetic resonance imaging for the first time. The dynamic nuclear polarization parameters such as dynamic nuclear polarization (DNP) factor, longitudinal relaxivity, saturation parameter, leakage factor and coupling factor were estimated for deuterated nitroxyl radicals. DNP enhancement increases with agent concentration up to 3 mm and decreases above 3 mm. The proton spin-lattice relaxation time and the longitudinal relaxivity parameters were estimated. The leakage factor increases with increasing agent concentration up to 3 mm and reaches plateau in the region 3-5 mm. The coupling parameter shows the interaction between the electron and nuclear spins to be mainly dipolar in origin. DNP spectrum exhibits that the full width at half maximum values are higher for undeuterated nitroxyl radicals compared with deuterated nitroxyl radicals, which leads to the increase in DNP enhancement. The ESR parameters such as, the line width, line shape, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were calculated. The narrow line width was observed for deuterated nitroxyl radicals compared with undeuterated nitroxyl radicals, which leads to the higher saturation parameter value and DNP enhancement. The novelty of the work permits clear understanding of the DNP parameters determining the higher DNP enhancement compared with the undeuterated nitroxyl radicals. Copyright © 2017 John Wiley & Sons, Ltd.

5.
Magn Reson Chem ; 55(8): 700-705, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28052402

RESUMO

The electron spin resonance studies were carried out for 2 mm concentration of 14 N-labeled and 15 N-labeled 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl and their deuterated nitroxyl radicals using X-band electron spin resonance spectrometer. The electron spin resonance line shape analysis was carried out. The electron spin resonance parameters such as linewidth, Lorentzian component, signal intensity ratio, rotational correlation time, hyperfine coupling constant and g-factor were estimated. The deuterated nitroxyl radicals have narrow linewidth and an increase in Lorentzian component, compared with undeuterated nitroxyl radicals. The dynamic nuclear polarization factor was observed for all nitroxyl radicals. Upon 2 H labeling, about 70% and 40% increase in dynamic nuclear polarization factor were observed for 14 N-labeled and 15 N-labeled nitroxyl radicals, respectively. The signal intensity ratio and g-value indicate the isotropic nature of the nitroxyl radicals in pure water. Therefore, the deuterated nitroxyl radicals are suitable spin probes for in vivo/in vitro electron spin resonance and Overhauser-enhanced magnetic resonance imaging modalities. Copyright © 2017 John Wiley & Sons, Ltd.

6.
Magn Reson Chem ; 55(11): 1022-1028, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28599057

RESUMO

Agarose is a tissue-equivalent material and its imaging characteristics similar to those of real tissues. Hence, the dynamic nuclear polarization studies of 3-carboxy-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (carboxy-PROXYL) in agarose gel were carried out. The dynamic nuclear polarization parameters such as spin lattice relaxation time, longitudinal relaxivity, leakage factor, saturation parameter and coupling parameter were estimated for 2 mM carboxy-PROXYL in phosphate-buffered saline solution and water/agarose mixture (99 : 1). From these results, the spin probe concentration was optimized as 2 mM, and the reduction in enhancement was observed for carboxy-PROXYL in water/agarose mixture (99 : 1) compared with phosphate-buffered saline solution. Phantom imaging was also performed with 2 mM concentration of carboxy-PROXYL in various concentrations of agarose gel at various radio frequency power levels. The results from the dynamic nuclear polarization measurements agree well with the phantom imaging results. These results pave the way for designing model system for human tissues suited to the biological applications of electron spin resonance/Overhauser-enhanced magnetic resonance imaging.

7.
Anal Chem ; 88(4): 2021-7, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26796949

RESUMO

The presence of malignant ascites in advanced cancer patients is associated with both a poor prognosis and quality of life with a risk of abdominal infection and sepsis. Contemporary noninvasive visualization methods such as ultrasound, computed tomography, and magnetic resonance imaging (MRI) often struggle to differentiate malignant ascites from surrounding tissues. This study aimed to determine the utility of selective H2O imaging in the abdominal cavity with a free radical probe and deuterium oxide (D2O) contrast agent using in vivo dynamic nuclear polarization-MRI (DNP-MRI). Phantom imaging experiments established a linear relationship between H2O volume and image intensity using in vivo DNP-MRI. Similar results were obtained when the radical-D2O probe was used to determine selective and spatial information on H2O in vivo, modeled by the injection of saline into the abdominal cavity of mice. To demonstrate the utility of this method for disease, malignant ascites in peritoneal metastasis animal model was selected as one of the typical examples. In vivo DNP-MRI of peritoneal metastasis animal model was performed 7-21 days after intraperitoneal injection of luciferase, stably expressing the human pancreatic carcinoma (SUIT-2). The image intensity with increasing malignant ascites was significantly increased at days 7, 16, and 21. This increase corresponded to in vivo tumor progression, as measured by bioluminescent imaging. These results suggest that H2O signal enhancement in DNP-MRI using radical-D2O contrast is positively associated with the progression of dissemination and could be a useful biomarker for malignant ascites with cancer metastasis.


Assuntos
Ascite/diagnóstico por imagem , Imageamento por Ressonância Magnética , Neoplasias Peritoneais/patologia , Animais , Linhagem Celular Tumoral , Meios de Contraste/química , Óxido de Deutério/química , Modelos Animais de Doenças , Espectroscopia de Ressonância de Spin Eletrônica , Genes Reporter , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/patologia , Neoplasias Peritoneais/secundário , Radiografia , Transplante Heterólogo
8.
Magn Reson Chem ; 54(11): 874-879, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27432403

RESUMO

Electron spin resonance and Overhauser-enhanced magnetic resonance imaging studies were carried out for various concentrations of 14 N-labeled 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl in pure water. Overhauser-enhancement factor attains maxima in the range of 2.5-3 mm concentration. The leakage factor showed an asymptotic increase with increasing agent concentration. The coupling parameter showed the interaction between the electron and nuclear spins to be mainly dipolar in origin. The electron spin resonance parameters, such as the line width, line shape and g-factor, were determined. The line width analysis confirms that the line broadening is proportional to the agent concentration, and also the agent concentration is optimized in the range of 2.5-3 mm. The line shape analysis shows that the observed electron spin resonance line shape is a Voigt line shape, in which the Lorentzian component is dominant. The contribution of Lorentzian component was estimated using the winsim package. The Lorentzian component of the resonance line attains maxima in the range of 2.5-3 mm concentration. Therefore, this study reveals that the agent concentration, line width and Lorentzian component are the important factors in determining the Overhauser-enhancement factor. Hence, the agent concentration was optimized as 2.5-3 mm for in vivo/in vitro electron spin resonance imaging and Overhauser-enhanced magnetic resonance imaging phantom studies. Copyright © 2016 John Wiley & Sons, Ltd.

9.
Clin Exp Hypertens ; 37(1): 45-50, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-24678965

RESUMO

Abnormal elevation of blood pressure in early morning (rest-to-active phase) is suggested to cause cardiovascular events. We investigated whether azilsartan (AZL), a novel potent angiotensin receptor blocker, suppresses blood pressure elevation from the light-rest to dark-active phase in spontaneously hypertensive rats (SHRs). AZL has a sustained depressor effect around the rest-to-active phase in SHRs to a greater extent than candesartan (CAN), despite their similar depressor effects for over 24 h. AZL did not cause sympathoexcitation. These results suggest that AZL has a more sustained depressor effect than CAN around the rest-to-active phase in SHRs, and might have advantages for early morning hypertension.


Assuntos
Anti-Hipertensivos/farmacologia , Benzimidazóis/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Oxidiazóis/farmacologia , Descanso/fisiologia , Animais , Compostos de Bifenilo , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Endogâmicos SHR , Tetrazóis/farmacologia
10.
Anal Chem ; 86(15): 7234-8, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25036767

RESUMO

Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.


Assuntos
Radicais Livres/química , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Flavina-Adenina Dinucleotídeo/química , Oxirredução , Ubiquinona/análogos & derivados , Ubiquinona/química
11.
Biol Pharm Bull ; 35(7): 1035-40, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22791149

RESUMO

Reduction of a nitroxyl radical, carbamoyl-PROXYL in association of free radical production and hepatic glutathione (GSH) was investigated in iron overloaded mice using an in vivo L-band electron spin resonance (ESR) spectrometer. Significant increases in hepatic iron, lipid peroxidation and decrease in hepatic GSH were observed in mice intraperitoneally (i.p.) administrated with ferric nitrilotriacetate (Fe(III)-NTA, a total 45 µmol/mouse over a period of 3 weeks). Free radical production in iron overloaded mice was evidenced by significantly enhanced rate constant of ESR signal decay of carbamoyl-PROXYL, which was slightly reduced by treatment with iron chelator, deferoxamine. Moreover, the rate constant of ESR signal decay was negatively correlated with hepatic GSH level (r=-0.586, p<0.001). On the other hand, hepatic GSH-depletion (>80%) in mice through daily i.p. injection and drinking water supplementation of L-buthionine-[S,R]-sulfoximine (BSO) significantly retarded ESR signal decay, while there were no changes in serum aspartate aminotransferase and liver thiobarbituric acid-reactive substances levels. In conclusion, GSH plays two distinguish roles on ESR signal decay of carbamoyl-PROXYL, as an antioxidant and as a reducing agent, dependently on its concentration. Therefore, it should be taken into account in the interpretation of free radical production in each specific experimental setting.


Assuntos
Óxidos N-Cíclicos/metabolismo , Sobrecarga de Ferro/metabolismo , Pirrolidinas/metabolismo , Animais , Carcinógenos , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos , Glutationa/metabolismo , Ferro/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Ácido Nitrilotriacético/análogos & derivados , Estresse Oxidativo , Baço/metabolismo
12.
Clin Exp Hypertens ; 34(6): 456-62, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22471901

RESUMO

It has been demonstrated that the antihypertensive drugs with the antioxidant action on the brainstem inhibit the sympathetic activity and consequently decrease blood pressure and heart rate (HR) in hypertensive rats. Combination drugs of the angiotensin receptor blocker and calcium channel blocker, such as olmesartan (OLM)/azelnidipine (AZ) and candesartan (CAN)/amlodipine (AM), are widely used for treating hypertension in Japan. In this study, it was investigated whether there are differences in the antioxidant effect in the brain and the sympathoinhibitory effect between OLM/AZ and CAN/AM combination therapies in stroke-prone spontaneously hypertensive rats (SHRSP). OLM/AZ (10/8 mg kg(-1) day(-1)), CAN/AM (4/2.5 mg kg(-1) day(-1)), or vehicle was orally administered for 30 days to SHRSP. OLM/AZ and CAN/AM markedly decreased systolic blood pressure to the same extent. OLM/AZ decreased HR to a greater extent than CAN/AM. Urinary norepinephrine excretion as a marker of sympathetic activity was unchanged in the CAN/AM group, but reduced in the OLM/AZ group. Oxidative stress in the whole brain assessed using the in vivo electron spin resonance method was similarly decreased in both OLM/AZ and CAN/AM groups. Importantly, thiobarbituric acid reactive substance levels in the brainstem were significantly lower in the OLM/AZ group, but not in the CAN/AM group, than in the vehicle group. These results suggest that combination therapy of either OLM/AZ or CAN/AM does not induce reflex-mediated sympathetic activation despite the marked blood pressure reduction, which is associated with an antioxidant effect in the brain regions affecting the sympathetic activity. Furthermore, the antioxidant effect in the brainstem and the sympathoinhibitory effect of OLM/AZ combination may be greater than those of CAN/AM combination treatment.


Assuntos
Anti-Hipertensivos/uso terapêutico , Ácido Azetidinocarboxílico/análogos & derivados , Pressão Sanguínea/efeitos dos fármacos , Bloqueadores dos Canais de Cálcio/uso terapêutico , Di-Hidropiridinas/uso terapêutico , Hipertensão/tratamento farmacológico , Imidazóis/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Tetrazóis/uso terapêutico , Animais , Ácido Azetidinocarboxílico/uso terapêutico , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Masculino , Olmesartana Medoxomila , Ratos , Ratos Endogâmicos SHR
13.
Proc Natl Acad Sci U S A ; 106(42): 17898-903, 2009 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-19815528

RESUMO

Architectural and functional abnormalities of blood vessels are a common feature in tumors. A consequence of increased vascular permeability and concomitant aberrant blood flow is poor delivery of oxygen and drugs, which is associated with treatment resistance. In the present study, we describe a strategy to simultaneously visualize tissue oxygen concentration and microvascular permeability by using a hyperpolarized (1)H-MRI, known as Overhauser enhanced MRI (OMRI), and an oxygen-sensitive contrast agent OX63. Substantial MRI signal enhancement was induced by dynamic nuclear polarization (DNP). The DNP achieved up to a 7,000% increase in MRI signal at an OX63 concentration of 1.5 mM compared with that under thermal equilibrium state. The extent of hyperpolarization is influenced mainly by the local concentration of OX63 and inversely by the tissue oxygen level. By collecting dynamic OMRI images at different hyperpolarization levels, local oxygen concentration and microvascular permeability of OX63 can be simultaneously determined. Application of this modality to murine tumors revealed that tumor regions with high vascular permeability were spatio-temporally coincident with hypoxia. Quantitative analysis of image data from individual animals showed an inverse correlation between tumor vascular leakage and median oxygen concentration. Immunohistochemical analyses of tumor tissues obtained from the same animals after OMRI experiments demonstrated that lack of integrity in tumor blood vessels was associated with increased tumor microvascular permeability. This dual imaging technique may be useful for the longitudinal assessment of changes in tumor vascular function and oxygenation in response to chemotherapy, radiotherapy, or antiangiogenic treatment.


Assuntos
Permeabilidade Capilar , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/metabolismo , Oxigênio/metabolismo , Actinas/metabolismo , Animais , Meios de Contraste , Feminino , Hipóxia/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C3H , Neovascularização Patológica , Pericitos/metabolismo , Pericitos/patologia
14.
Antioxid Redox Signal ; 36(1-3): 172-184, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015957

RESUMO

Significance:In vivo molecular and metabolic imaging is an emerging field in biomedical research that aims to perform noninvasive detection of tissue metabolism in disease states and responses to therapeutic agents. The imbalance in tissue oxidation/reduction (Redox) states is related to the onset and progression of several diseases. Tissue redox metabolism provides biomarkers for early diagnosis and drug treatments. Thus, noninvasive imaging of redox metabolism could be a useful, novel diagnostic tool for diagnosis of redox-related disease and drug discovery. Recent Advances:In vivo dynamic nuclear polarization magnetic resonance imaging (DNP-MRI) is a technique that enables the imaging of free radicals in living animals. DNP enhances the MRI signal by irradiating the target tissue or solution with the free radical molecule's electron paramagnetic resonance frequency before executing pulse sequence of the MRI. In vivo DNP-MRI with redox-sensitive nitroxyl radicals as the DNP redox contrast agent enables the imaging of the redox metabolism on various diseases. Moreover, nitroxyl radicals show antioxidant effects that suppress oxidative stress. Critical Issues: To date, considerable progress has been documented preclinically in the development of animal imaging systems. Here, we review redox imaging of in vivo DNP-MRI with a focus on the recent progress of this system and its uses in patients with redox-related diseases. Future Directions: This technique could have broad applications in the study of other redox-related diseases, such as cancer, inflammation, and neurological disorders, and facilitate the evaluation of treatment response as a theranostic tool. Antioxid. Redox Signal. 36, 172-184.


Assuntos
Imageamento por Ressonância Magnética , Medicina de Precisão , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres , Humanos , Imageamento por Ressonância Magnética/métodos , Oxirredução
15.
Neuroimage ; 57(3): 866-72, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624473

RESUMO

Abuse of the powerfully addictive psychostimulant, methamphetamine, occurs worldwide. Recent studies have suggested that methamphetamine-induced dopaminergic neurotoxicity is related to oxidative stress. In response to nerve activation, the mitochondrial respiratory chain is rapidly activated. The enhancement of mitochondrial respiratory chain activation may induce oxidative stress in the brain. However, there is little experimental evidence regarding the mitochondrial function after methamphetamine administration in vivo. Here, we evaluated whether a single administration of methamphetamine induces ATP consumption and overactivation of mitochondria. We measured mitochondrial function in two different ways: by monitoring oxygen partial pressure using an oxygen-selective electrode, and by imaging of redox reactions using a nitroxyl radical (i.e., nitroxide) coupled with Overhauser-enhanced magnetic resonance imaging (OMRI). A single administration of methamphetamine to Wistar rats induced dopaminergic nerve activation, ATP consumption and an increase in mitochondrial respiratory chain function in both the striatum and cortex. Furthermore, antioxidant TEMPOL prevented the increase in mitochondrial oxidative damage and methamphetamine-induced sensitization. These findings suggest that energy-supplying reactions after dopaminergic nerve activation are associated with oxidative stress in both the striatum and cortex, leading to abnormal behavior.


Assuntos
Encéfalo/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/farmacologia , Metanfetamina/farmacologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Animais , Encéfalo/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo , Ratos , Ratos Wistar
16.
J Org Chem ; 76(2): 435-40, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21190389

RESUMO

We have synthesized several nitroxides with different substituents which vary the steric and electronic environment around the N-O moiety and have systematically investigated the role of substituents on the stability of the radicals. Our results demonstrated the reactivity toward ascorbate correlates with the redox potential of the derivatives. Furthermore, ab initio calculations also indicated a correlation between the reduction rate and the computed singly occupied molecular orbital-lowest unoccupied molecular orbital energy gap, but not with solvent accessible surface area of the N-O moiety, supporting the experimental results and suggesting that the electronic factors largely determine the radicals' stability. Hence, it is possible to perform virtual screening of nitroxides to optimize their stability, which can help to rationally design novel nitroxides for their potential use in vivo.


Assuntos
Óxidos N-Cíclicos/química , Piperidinas/química , Ácido Ascórbico/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectroscopia de Ressonância Magnética , Relação Estrutura-Atividade
17.
Free Radic Res ; 55(4): 343-351, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33307891

RESUMO

Redox reactions accompanied by the oxidation-reduction of endogenous molecules play important roles in maintaining homeostasis in living organisms. In humans, numerous endogenous molecules that contribute toward maintaining physiological conditions form free radicals via electron transfer. A typical example of this is the mitochondrial electron transport chain, which is involved in energy production. If free radicals derived from endogenous molecules could be visualized and exploited as biological and functional probes, redox reactions mediated by endogenous molecules could be detected non-invasively. We succeeded in visualizing the free radicals derived from endogenous molecules using an in vivo dynamic nuclear polarization (DNP) magnetic resonance imaging (MRI) system. In this review, we describe the visualization of endogenous redox molecules, such as flavins and ubiquinones, which are mitochondrial electron carriers, as well as vitamin E and vitamin C (ascorbate). In addition, we describe the application of melanin free radicals for the in vivo visualization of metabola without using probes via in vivo DNP-MRI.


Assuntos
Flavinas/análise , Ubiquinona/análise , Transporte de Elétrons , Flavinas/metabolismo , Radicais Livres/análise , Radicais Livres/metabolismo , Humanos , Imageamento por Ressonância Magnética , Mitocôndrias/química , Mitocôndrias/metabolismo , Imagem Molecular , Oxirredução , Ubiquinona/metabolismo
18.
Anal Chem ; 82(23): 9789-96, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21043438

RESUMO

A sensitive and simultaneous analytical technique for visualizing multiple endogenous molecules is now strongly required in biological science. Here, we show the applicability of a matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) system for getting chemically diverse metabolite profiles on a single-mammalian cell. This ultrahighly sensitive MALDI-MS technique enabled a spatially resolved detection of a broad range of metabolites including nucleotides, cofactors, phosphorylated sugars, amino acids, lipids, and carboxylic acids in normal mouse brain tissue with their unique distributions. Furthermore, a combination of MS imaging and metabolic pathway analysis of a rat transient middle cerebral artery occlusion model visualized a spatiotemporal behavior of metabolites in the central metabolic pathway regulated by an ischemia reperfusion. These findings highlight potential applications of an in situ metabolomic imaging technique to visualize spatiotemporal dynamics of the tissue metabolome, which will facilitate biological discovery in both preclinical and clinical settings.


Assuntos
Metaboloma , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Microscopia de Fluorescência , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
19.
Sci Rep ; 10(1): 17162, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33051566

RESUMO

Motivated by developments in information technology, recording personal parameters with health devices is effective in health promotion. Today's indoor individual lifestyles often involve using electrical appliances. We developed a health support system combined with wireless electricity monitoring and investigated whether electricity use is associated with residents' vital data and lifestyles. We recruited 116 participants in February 2013. Their vital and electricity use data were collected daily. They completed a self-administered questionnaire. Among participants living alone, electricity from 20 February to 11 March 2013 was negatively associated with high-density lipoprotein (HDL) (P = 0.008) and positively associated with low-density lipoprotein (LDL) (P = 0.007) and neutral fat (P = 0.020) levels. Among all participants, electricity use was negatively associated with vegetable intake (P = 0.044) and step count (P = 0.040). Temperature sensitivity in winter was negatively associated with the LDL/HDL ratio for both men and women. For men, temperature sensitivity in winter was negatively related with alcohol intake; for women, it was positively related to body fat percentage and abdominal circumference and negatively correlated to vegetable intake. Temperature sensitivity in summer was positively associated with vegetable intake for men and women. In conclusion, electricity use was related to vital data and lifestyles and influenced by temperature.


Assuntos
Monitorização Fisiológica/métodos , Tecido Adiposo/metabolismo , Adulto , Consumo de Bebidas Alcoólicas/metabolismo , Índice de Massa Corporal , HDL-Colesterol/metabolismo , LDL-Colesterol/metabolismo , Planejamento em Saúde Comunitária/métodos , Eletricidade , Feminino , Humanos , Japão , Estilo de Vida , Lipoproteínas , Lipoproteínas HDL , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo , Tecnologia sem Fio , Adulto Jovem
20.
Yakugaku Zasshi ; 129(3): 273-8, 2009 Mar.
Artigo em Japonês | MEDLINE | ID: mdl-19252384

RESUMO

In vivo redox reaction is involved in processes of oxidative diseases. The redox imaging technique is important to diagnose redox-induced diseases and to assess cure effects of pharmaceutical drugs. A group of nitroxyl radicals is sensitive to redox reactions and we have investigated mechanisms of oxidative diseases, including diabetes, ischemia reperfusion injuries and gastric ulcer. ESR technique has been utilized in analysis of free radicals, which is generated through imbalance of in vivo redox status. We have been developing magnetic resonance approaches for imaging free radicals/redox status in living animals. Overhauser enhanced MRI (OMRI) is a new technique for imaging in vivo redox status in animals via Overhauser effect. We have developed nanometer-scale imaging and simultaneous assessment of redox processes by using OMRI with (14)N- and (15)N- labeled nitroxyl probes with different distribution properties. We also developed a home-built OMRI imager based on an electromagnet for L-band ESRI. This OMRI technique with dual probes may become a powerful tool to clarify mechanisms of disease and to monitor pharmaceutical therapy.


Assuntos
Imageamento por Ressonância Magnética/métodos , Oxirredução , Estresse Oxidativo , Animais , Diabetes Mellitus/etiologia , Descoberta de Drogas , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Óxidos de Nitrogênio , Traumatismo por Reperfusão/etiologia , Úlcera Gástrica/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA