Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Cell Environ ; 44(3): 706-728, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314160

RESUMO

An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.


Assuntos
MicroRNAs/metabolismo , Pinus/metabolismo , RNA de Plantas/metabolismo , Desidratação , Genes de Plantas/genética , MicroRNAs/genética , Pinus/crescimento & desenvolvimento , Pinus/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Caules de Planta/metabolismo , Caules de Planta/fisiologia , RNA de Plantas/genética , Transcriptoma
2.
BMC Genomics ; 15: 464, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24919981

RESUMO

BACKGROUND: Understanding molecular mechanisms that control photosynthesis and water use efficiency in response to drought is crucial for plant species from dry areas. This study aimed to identify QTL for these traits in a Mediterranean conifer and tested their stability under drought. RESULTS: High density linkage maps for Pinus pinaster were used in the detection of QTL for photosynthesis and water use efficiency at three water irrigation regimes. A total of 28 significant and 27 suggestive QTL were found. QTL detected for photochemical traits accounted for the higher percentage of phenotypic variance. Functional annotation of genes within the QTL suggested 58 candidate genes for the analyzed traits. Allele association analysis in selected candidate genes showed three SNPs located in a MYB transcription factor that were significantly associated with efficiency of energy capture by open PSII reaction centers and specific leaf area. CONCLUSIONS: The integration of QTL mapping of functional traits, genome annotation and allele association yielded several candidate genes involved with molecular control of photosynthesis and water use efficiency in response to drought in a conifer species. The results obtained highlight the importance of maintaining the integrity of the photochemical machinery in P. pinaster drought response.


Assuntos
Secas , Interação Gene-Ambiente , Fotossíntese/genética , Pinus/genética , Pinus/metabolismo , Locos de Características Quantitativas , Estresse Fisiológico/genética , Alelos , Mapeamento Cromossômico , Biologia Computacional , Cruzamentos Genéticos , Estudos de Associação Genética , Ligação Genética , Genoma de Planta , Genômica , Escore Lod , Anotação de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único
3.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931075

RESUMO

Climate change-induced hazards, such as drought, threaten forest resilience, particularly in vulnerable regions such as the Mediterranean Basin. Maritime pine (Pinus pinaster Aiton), a model species in Western Europe, plays a crucial role in the Mediterranean forest due to its genetic diversity and ecological plasticity. This study characterizes transcriptional profiles of scion and rootstock stems of four P. pinaster graft combinations grown under well-watered conditions. Our grafting scheme combined drought-sensitive and drought-tolerant genotypes for scions (GAL1056: drought-sensitive scion; and Oria6: drought-tolerant scion) and rootstocks (R1S: drought-sensitive rootstock; and R18T: drought-tolerant rootstock). Transcriptomic analysis revealed expression patterns shaped by genotype provenance and graft combination. The accumulation of differentially expressed genes (DEGs) encoding proteins, involved in defense mechanisms and pathogen recognition, was higher in drought-sensitive scion stems and also increased when grafted onto drought-sensitive rootstocks. DEGs involved in drought tolerance mechanisms were identified in drought-tolerant genotypes as well as in drought-sensitive scions grafted onto drought-tolerant rootstocks, suggesting their establishment prior to drought. These mechanisms were associated with ABA metabolism and signaling. They were also involved in the activation of the ROS-scavenging pathways, which included the regulation of flavonoid and terpenoid metabolisms. Our results reveal DEGs potentially associated with the conifer response to drought and point out differences in drought tolerance strategies. These findings suggest genetic trade-offs between pine growth and defense, which could be relevant in selecting more drought-tolerant Pinus pinaster trees.

4.
Sci Total Environ ; 832: 155007, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35381249

RESUMO

Increasing temperatures along with severe droughts are factors that may jeopardize the survival of the forests in the Mediterranean basin. In this region, Pinus pinaster is a common conifer species, that has been used as a model species in evolutionary studies due to its adaptive response to changing environments. Although its drought tolerance mechanisms are already known, knowledge about the dynamics of its root microbiota is still scarce. We aimed to decipher the structural (bacterial abundance), compositional, functional and associative changes of the P. pinaster rhizosphere bacterial communities in spring and summer, at DNA and RNA level (environmental DNA, live and dead cells, and those synthesizing proteins). A fundamental aspect of root microbiome-based approaches is to guarantee the correct origin of the samples. Thus, we assessed the genotype of host needles and roots from which rhizosphere samples were obtained. For more than 50% of the selected trees, genotype discrepancies were found and in three cases the plant species could not be determined. Rhizosphere bacterial communities were homogeneous with respect to diversity and structural levels regardless of the host genotype in both seasons. Nonetheless, significant changes were seen in the taxonomic profiles depending on the season. Seasonal changes were also evident in the bacterial co-occurrence patterns, both in DNA and RNA libraries. While spring communities switched to more complex networks, summer populations resulted in more compartmentalized networks, suggesting that these communities were facing a disturbance. These results may mirror the future status of bacterial communities in a context of climate change. A keystone hub was ascribed to the genus Phenylobacterium in the functional network calculated for summer. Overall, it is important to validate the origin and identity of plant samples in any plant-microbiota study so that more reliable ecological analyses are performed.


Assuntos
Pinus , Rizosfera , Bactérias/genética , Secas , Genótipo , Pinus/genética , Raízes de Plantas/microbiologia , RNA , Microbiologia do Solo , Árvores/genética
5.
Ecol Evol ; 10(18): 9788-9807, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33005345

RESUMO

Adaptation of long-living forest trees to respond to environmental changes is essential to secure their performance under adverse conditions. Water deficit is one of the most significant stress factors determining tree growth and survival. Maritime pine (Pinus pinaster Ait.), the main source of softwood in southwestern Europe, is subjected to recurrent drought periods which, according to climate change predictions for the years to come, will progressively increase in the Mediterranean region. The mechanisms regulating pine adaptive responses to environment are still largely unknown. The aim of this work was to go a step further in understanding the molecular mechanisms underlying maritime pine response to water stress and drought tolerance at the whole plant level. A global transcriptomic profiling of roots, stems, and needles was conducted to analyze the performance of siblings showing contrasted responses to water deficit from an ad hoc designed full-sib family. Although P. pinaster is considered a recalcitrant species for vegetative propagation in adult phase, the analysis was conducted using vegetatively propagated trees exposed to two treatments: well-watered and moderate water stress. The comparative analyses led us to identify organ-specific genes, constitutively expressed as well as differentially expressed when comparing control versus water stress conditions, in drought-sensitive and drought-tolerant genotypes. Different response strategies can point out, with tolerant individuals being pre-adapted for coping with drought by constitutively expressing stress-related genes that are detected only in latter stages on sensitive individuals subjected to drought.

6.
Methods Mol Biol ; 1456: 99-112, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27770361

RESUMO

Different molecular techniques have been developed to study either the global level of methylated cytosines or methylation at specific gene sequences. One of them is the methylation-sensitive amplified polymorphism technique (MSAP) which is a modification of amplified fragment length polymorphism (AFLP). It has been used to study methylation of anonymous CCGG sequences in different fungi, plants, and animal species. The main variation of this technique resides on the use of isoschizomers with different methylation sensitivity (such as HpaII and MspI) as a frequent-cutter restriction enzyme. For each sample, MSAP analysis is performed using both EcoRI/HpaII- and EcoRI/MspI-digested samples. A comparative analysis between EcoRI/HpaII and EcoRI/MspI fragment patterns allows the identification of two types of polymorphisms: (1) methylation-insensitive polymorphisms that show common EcoRI/HpaII and EcoRI/MspI patterns but are detected as polymorphic amplified fragments among samples and (2) methylation-sensitive polymorphisms which are associated with the amplified fragments that differ in their presence or absence or in their intensity between EcoRI/HpaII and EcoRI/MspI patterns. This chapter describes a detailed protocol of this technique and discusses the modifications that can be applied to adjust the technology to different species of interest.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Citosina/metabolismo , Metilação de DNA , Epigênese Genética , Epigenômica/métodos , Ilhas de CpG
7.
Int J Food Microbiol ; 145(1): 132-9, 2011 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-21185102

RESUMO

Wine production in most countries is based on the use of commercial strains leading to the colonisation of the wineries by these strains with the consequent reduction of autochthonous biodiversity. This implies that wine styles could therefore become standardised. The vineyard could be an important source of native yeasts of oenological interest. For this reason the objective of this study was to compare two agronomic conditions with the aim of preserving yeast biodiversity in the vineyard. A three year sampling plan was designed to evaluate the influence of different agronomic parameters on the biodiversity of fermentative grape yeasts. Thus two vineyards, one organic and one conventional, with three different grape varieties (Shiraz, Grenache and Barbera) were chosen. In total, 27 samples were collected from both vineyards. Of these, 1080 colonies were isolated and a total of 9 species were identified. The strains identified as Saccharomyces cerevisiae were genotyped by microsatellite analysis obtaining nine different electrophoretic patterns. Classical ecology indexes were used to obtain the richness (S), the biodiversity (H') and the dominance (D) of the species studied. The results indicated a clear influence on grape associated yeast diversity of the phytosanitary treatment used in the vineyard. This is the first time that classical ecology indexes have been used to study the ecology of the spontaneous fermentation of grape musts and the species Candida sorbosa and Pichia toletana have been described in vineyards of the Madrid winegrowing region.


Assuntos
Agricultura/métodos , Biodiversidade , Vitis/microbiologia , Leveduras/isolamento & purificação , Candida/classificação , Candida/genética , Candida/isolamento & purificação , DNA Fúngico/genética , Fermentação , Genótipo , Repetições de Microssatélites , Agricultura Orgânica/métodos , Pichia/classificação , Pichia/genética , Pichia/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Técnica de Amplificação ao Acaso de DNA Polimórfico , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/isolamento & purificação , Espanha , Vitis/classificação , Vinho/microbiologia , Leveduras/classificação , Leveduras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA