Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 18(6): e1010646, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731839

RESUMO

Prions are infectious agents that replicate through the autocatalytic misfolding of the cellular prion protein (PrPC) into infectious aggregates (PrPSc) causing fatal neurodegenerative diseases in humans and animals. Prions exist as strains, which are encoded by conformational variants of PrPSc. The transmissibility of prions depends on the PrPC sequence of the recipient host and on the incoming prion strain, so that some animal prion strains are more contagious than others or are transmissible to new species, including humans. Nor98/atypical scrapie (AS) is a prion disease of sheep and goats reported in several countries worldwide. At variance with classical scrapie (CS), AS is considered poorly contagious and is supposed to be spontaneous in origin. The zoonotic potential of AS, its strain variability and the relationships with the more contagious CS strains remain largely unknown. We characterized AS isolates from sheep and goats by transmission in ovinised transgenic mice (tg338) and in two genetic lines of bank voles, carrying either methionine (BvM) or isoleucine (BvI) at PrP residue 109. All AS isolates induced the same pathological phenotype in tg338 mice, thus proving that they encoded the same strain, irrespective of their geographical origin or source species. In bank voles, we found that the M109I polymorphism dictates the susceptibility to AS. BvI were susceptible and faithfully reproduced the AS strain, while the transmission in BvM was highly inefficient and was characterized by a conformational change towards a CS-like prion strain. Sub-passaging experiments revealed that the main strain component of AS is accompanied by minor CS-like strain components, which can be positively selected during replication in both AS-resistant or AS-susceptible animals. These findings add new clues for a better comprehension of strain selection dynamics in prion infections and have wider implications for understanding the origin of contagious prion strains, such as CS.


Assuntos
Príons , Scrapie , Aminoácidos , Animais , Arvicolinae/genética , Arvicolinae/metabolismo , Suscetibilidade a Doenças , Cabras/metabolismo , Camundongos , Camundongos Transgênicos , Permissividade , Proteínas Priônicas/genética , Príons/metabolismo , Scrapie/genética , Ovinos
2.
Emerg Infect Dis ; 27(7): 1981-1984, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33979566

RESUMO

We detected severe acute respiratory syndrome coronavirus 2 in an otherwise healthy poodle living with 4 family members who had coronavirus disease. We observed antibodies in serum samples taken from the dog, indicating seroconversion. Full-length genome sequencing showed that the canine and human viruses were identical, suggesting human-to-animal transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cães , Humanos , Itália/epidemiologia
3.
J Transl Med ; 19(1): 246, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090468

RESUMO

BACKGROUND: Since the first complete genome sequencing of SARS-CoV-2 in December 2019, more than 550,000 genomes have been submitted into the GISAID database. Sequencing of the SARS-CoV-2 genome might allow identification of variants with increased contagiousness, different clinical patterns and/or different response to vaccines. A highly automated next generation sequencing (NGS)-based method might facilitate an active genomic surveillance of the virus. METHODS: RNA was extracted from 27 nasopharyngeal swabs obtained from citizens of the Italian Campania region in March-April 2020 who tested positive for SARS-CoV-2. Following viral RNA quantification, sequencing was performed using the Ion AmpliSeq SARS-CoV-2 Research Panel on the Genexus Integrated Sequencer, an automated technology for library preparation and sequencing. The SARS-CoV-2 complete genomes were built using the pipeline SARS-CoV-2 RECoVERY (REconstruction of COronaVirus gEnomes & Rapid analYsis) and analysed by IQ-TREE software. RESULTS: The complete genome (100%) of SARS-CoV-2 was successfully obtained for 21/27 samples. In particular, the complete genome was fully sequenced for all 15 samples with high viral titer (> 200 copies/µl), for the two samples with a viral genome copy number < 200 but greater than 20, and for 4/10 samples with a viral load < 20 viral copies. The complete genome sequences classified into the B.1 and B.1.1 SARS-CoV-2 lineages. In comparison to the reference strain Wuhan-Hu-1, 48 total nucleotide variants were observed with 26 non-synonymous substitutions, 18 synonymous and 4 reported in untranslated regions (UTRs). Ten of the 26 non-synonymous variants were observed in ORF1ab, 7 in S, 1 in ORF3a, 2 in M and 6 in N genes. CONCLUSIONS: The Genexus system resulted successful for SARS-CoV-2 complete genome sequencing, also in cases with low viral copies. The use of this highly automated system might facilitate the standardization of SARS-CoV-2 sequencing protocols and make faster the identification of novel variants during the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Itália , Sequenciamento Completo do Genoma
4.
Emerg Infect Dis ; 24(6): 1029-1036, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29652245

RESUMO

Prions cause fatal and transmissible neurodegenerative diseases, including Creutzfeldt-Jakob disease in humans, scrapie in small ruminants, and bovine spongiform encephalopathy (BSE). After the BSE epidemic, and the associated human infections, began in 1996 in the United Kingdom, general concerns have been raised about animal prions. We detected a prion disease in dromedary camels (Camelus dromedarius) in Algeria. Symptoms suggesting prion disease occurred in 3.1% of dromedaries brought for slaughter to the Ouargla abattoir in 2015-2016. We confirmed diagnosis by detecting pathognomonic neurodegeneration and disease-specific prion protein (PrPSc) in brain tissues from 3 symptomatic animals. Prion detection in lymphoid tissues is suggestive of the infectious nature of the disease. PrPSc biochemical characterization showed differences with BSE and scrapie. Our identification of this prion disease in a geographically widespread livestock species requires urgent enforcement of surveillance and assessment of the potential risks to human and animal health.


Assuntos
Doenças dos Animais/epidemiologia , Doenças dos Animais/virologia , Camelus , Doenças Priônicas/veterinária , Argélia/epidemiologia , Doenças dos Animais/genética , Animais , Biópsia , Bovinos , Encefalopatia Espongiforme Bovina/epidemiologia , Imuno-Histoquímica , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Análise de Sequência de DNA , Zoonoses/epidemiologia
5.
Emerg Infect Dis ; 24(12): 2210-2218, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30457526

RESUMO

Chronic wasting disease (CWD) persists in cervid populations of North America and in 2016 was detected for the first time in Europe in a wild reindeer in Norway. We report the detection of CWD in 3 moose (Alces alces) in Norway, identified through a large scale surveillance program. The cases occurred in 13-14-year-old female moose, and we detected an abnormal form of prion protein (PrPSc) in the brain but not in lymphoid tissues. Immunohistochemistry revealed that the moose shared the same neuropathologic phenotype, characterized by mostly intraneuronal deposition of PrPSc. This pattern differed from that observed in reindeer and has not been previously reported in CWD-infected cervids. Moreover, Western blot revealed a PrPSc type distinguishable from previous CWD cases and from known ruminant prion diseases in Europe, with the possible exception of sheep CH1641. These findings suggest that these cases in moose represent a novel type of CWD.


Assuntos
Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia , Animais , Animais Selvagens , Encéfalo , Canadá/epidemiologia , Europa (Continente) , Feminino , Genótipo , Imuno-Histoquímica , Noruega , Príons/genética , Vigilância em Saúde Pública , Rena , Ovinos
6.
Acta Neuropathol ; 135(2): 179-199, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29094186

RESUMO

Prion diseases are caused by a misfolding of the cellular prion protein (PrP) to a pathogenic isoform named PrPSc. Prions exist as strains, which are characterized by specific pathological and biochemical properties likely encoded in the three-dimensional structure of PrPSc. However, whether cofactors determine these different PrPSc conformations and how this relates to their specific biological properties is largely unknown. To understand how different cofactors modulate prion strain generation and selection, Protein Misfolding Cyclic Amplification was used to create a diversity of infectious recombinant prion strains by propagation in the presence of brain homogenate. Brain homogenate is known to contain these mentioned cofactors, whose identity is only partially known, and which facilitate conversion of PrPC to PrPSc. We thus obtained a mix of distinguishable infectious prion strains. Subsequently, we replaced brain homogenate, by different polyanionic cofactors that were able to drive the evolution of mixed prion populations toward specific strains. Thus, our results show that a variety of infectious recombinant prions can be generated in vitro and that their specific type of conformation, i.e., the strain, is dependent on the cofactors available during the propagation process. These observations have significant implications for understanding the pathogenesis of prion diseases and their ability to replicate in different tissues and hosts. Importantly, these considerations might apply to other neurodegenerative diseases for which different conformations of misfolded proteins have been described.


Assuntos
Encéfalo/metabolismo , Doenças Priônicas/metabolismo , Proteínas Priônicas/metabolismo , Animais , Arvicolinae , Encéfalo/patologia , Escherichia coli , Camundongos Transgênicos , Polimorfismo Genético , Proteínas Priônicas/genética , Dobramento de Proteína , Proteínas Recombinantes/metabolismo
7.
Virol J ; 15(1): 10, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329554

RESUMO

CORRECTION: After Publication of the article [1], it has been brought to our attention that an author's name has been spelt incorrectly. The correct spelling should be "Massimo Ciccozzi", but it was previously included as "Massimo Cicozzi". The original version has now been revised to reflect this.

8.
Virus Genes ; 54(6): 812-817, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30203361

RESUMO

The complete and near-complete genome sequences (7206 nt and 7229 nt) of two wild boar HEV strains detected in Southern Italy were obtained by the next generation sequencing. Phylogenetic analysis and p distance comparisons of one of the strains with HEV-3 reference subtype strains confirmed the detection of a subtype 3i (p distance = 0.110) strain in wild boar, never detected in Italy either in wild boar or pigs. The sequence of the second strain was not classifiable in any of the subtypes defined to date, showing a p distance > 0.138 and a low nucleotide identity with all HEV reference strains. The virus may represent a novel subtype, with a low relationship to other strains of genotype 3 detected in wild boar, pigs, or humans in Europe. This result suggests the circulation in Italy of an emerging or uncommon HEV strain. Sequencing followed by phylogenetic analyses of the complete HEV coding regions are important tools for understanding the evolutionary and epidemiological dynamics underlying the wide genetic diversity of HEV strains.


Assuntos
Genótipo , Vírus da Hepatite E/classificação , Vírus da Hepatite E/genética , Hepatite E/veterinária , Filogenia , Doenças dos Suínos/virologia , Animais , Genoma Viral , Itália , Sus scrofa , Suínos
9.
Cytokine ; 89: 235-238, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-26748726

RESUMO

Human Papilloma Viruses (HPVs) are the causative agents of cervical cancer although other types of cancers are associated with HPV infection. Type I Interferons can interfere with HPV E6- and/or E7-dependent transformation and can affect microRNA (miRNA) expression. Cancer cells show a specific pattern of miRNA expression and HPVs are able to modulate miRNAs expressed in infected cells. Keratinocytes transduced with E6 and E7 from mucosal HPV-16 or cutaneous HPV-38 (K16 and K38) were studied to analyze the involvement of HPV oncoproteins in the anti-proliferative activity of IFN-ß. In view of our previous data showing senescence induction by the cytokine in K38 cells, we observe that IFN-ß treatment leads to p53-indipendent apoptosis in K16 cells whereas induces senescence in K16 cells if E6 is silenced and p53 expression is restored. The levels of selected miRNAs, deregulated in K16 and K38 cells, can be modulated by IFN-ß when E6 and E7 proteins of HPV-16, but not HPV-38, are expressed.


Assuntos
Apoptose/efeitos dos fármacos , Papillomavirus Humano 16/metabolismo , Interferon beta/farmacologia , Queratinócitos/metabolismo , MicroRNAs/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus/metabolismo , Proteínas Repressoras/metabolismo , Apoptose/genética , Linhagem Celular Transformada , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/patologia , Queratinócitos/virologia , MicroRNAs/genética , Proteínas Oncogênicas Virais/genética , Proteínas E7 de Papillomavirus/genética , Proteínas Repressoras/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
10.
Virol J ; 14(1): 239, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29258555

RESUMO

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV), which belongs to beta group of coronavirus, can infect multiple host species and causes severe diseases in humans. Multiple surveillance and phylogenetic studies suggest a bat origin. In this study, we describe the detection and full genome characterization of two CoVs closely related to MERS-CoV from two Italian bats, Pipistrellus kuhlii and Hypsugo savii. METHODS: Pool of viscera were tested by a pan-coronavirus RT-PCR. Virus isolation was attempted by inoculation in different cell lines. Full genome sequencing was performed using the Ion Torrent platform and phylogenetic trees were performed using IQtree software. Similarity plots of CoV clade c genomes were generated by using SSE v1.2. The three dimensional macromolecular structure (3DMMS) of the receptor binding domain (RBD) in the S protein was predicted by sequence-homology method using the protein data bank (PDB). RESULTS: Both samples resulted positive to the pan-coronavirus RT-PCR (IT-batCoVs) and their genome organization showed identical pattern of MERS CoV. Phylogenetic analysis showed a monophyletic group placed in the Beta2c clade formed by MERS-CoV sequences originating from humans and camels and bat-related sequences from Africa, Italy and China. The comparison of the secondary and 3DMMS of the RBD of IT-batCoVs with MERS, HKU4 and HKU5 bat sequences showed two aa deletions located in a region corresponding to the external subdomain of MERS-RBD in IT-batCoV and HKU5 RBDs. CONCLUSIONS: This study reported two beta CoVs closely related to MERS that were obtained from two bats belonging to two commonly recorded species in Italy (P. kuhlii and H. savii). The analysis of the RBD showed similar structure in IT-batCoVs and HKU5 respect to HKU4 sequences. Since the RBD domain of HKU4 but not HKU5 can bind to the human DPP4 receptor for MERS-CoV, it is possible to suggest also for IT-batCoVs the absence of DPP4-binding potential. More surveillance studies are needed to better investigate the potential intermediate hosts that may play a role in the interspecies transmission of known and currently unknown coronaviruses with particular attention to the S protein and the receptor specificity and binding affinity.


Assuntos
Quirópteros/virologia , Genoma Viral/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/classificação , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Sequência de Aminoácidos , Animais , Sequência de Bases , Itália , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Coronavírus da Síndrome Respiratória do Oriente Médio/isolamento & purificação , Reação em Cadeia da Polimerase , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína/genética , RNA Viral/genética , Análise de Sequência de RNA , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética
11.
PLoS Pathog ; 9(3): e1003219, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23505374

RESUMO

In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109I)CWD), typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109I)CWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109I)CWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc) (PrP(res)) in the same brain regions. Despite the low PrP(res) levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4) i.c. ID50 infectious units per gram. Bv(109I)CWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109I)CWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109I)CWD showed unique characteristics of "virulence", low PrP(res) accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc), neurodegeneration and infectivity.


Assuntos
Arvicolinae , Príons , Doença de Emaciação Crônica/metabolismo , Doença de Emaciação Crônica/transmissão , Animais , Encéfalo/patologia , Dobramento de Proteína , Doença de Emaciação Crônica/patologia
13.
Viruses ; 16(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066204

RESUMO

In recent years, the transmission of viruses from wildlife to humans has raised significant public health concerns, exemplified by the COVID-19 pandemic caused by the betacoronavirus SARS-CoV-2. Human activities play a substantial role in increasing the risk of zoonotic virus transmission from wildlife to humans. Rats and mice are prevalent in urban environments and may act as reservoirs for various pathogens. This study aimed to evaluate the presence of zoonotic viruses in wild rats and mice in both urban and rural areas, focusing on well-known zoonotic viruses such as betacoronavirus, hantavirus, arenavirus, kobuvirus, and monkeypox virus, along with other viruses occasionally detected in rats and mice, including rotavirus, norovirus, and astrovirus, which are known to infect humans at a high rate. A total of 128 animals were captured, including 70 brown rats (Rattus norvegicus), 45 black rats (Rattus rattus), and 13 house mice (Mus musculus), and feces, lung, and liver were collected. Among brown rats, one fecal sample tested positive for astrovirus RNA. Nucleotide sequencing revealed high sequence similarity to both human and rat astrovirus, suggesting co-presence of these viruses in the feces. Murine kobuvirus (MuKV) was detected in fecal samples from both black (n = 7) and brown (n = 6) rats, primarily from urban areas, as confirmed by sequence analysis. These findings highlight the importance of surveillance and research to understand and mitigate the risks associated with the potential transmission of pathogens by rodents.


Assuntos
Fezes , Zoonoses , Animais , Humanos , Camundongos , Ratos/virologia , Fezes/virologia , Zoonoses/virologia , Zoonoses/transmissão , Filogenia , COVID-19/virologia , COVID-19/transmissão , COVID-19/epidemiologia , Zoonoses Virais/transmissão , Zoonoses Virais/virologia , Animais Selvagens/virologia , Reservatórios de Doenças/virologia , Muridae/virologia , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Vírus/classificação , Vírus/isolamento & purificação , Vírus/genética
14.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792736

RESUMO

In this work, we studied the selective pressure and evolutionary analysis on the SARS-CoV-2 BF.7 and BQ.1.1 lineages circulating in Italy from July to December 2022. Two different datasets were constructed: the first comprised 694 SARS-CoV-2 BF.7 lineage sequences and the second comprised 734 BQ.1.1 sequences, available in the Italian COVID-19 Genomic (I-Co-Gen) platform and GISAID (last access date 15 December 2022). Alignments were performed with MAFFT v.7 under the Galaxy platform. The HYPHY software was used to study the selective pressure. Four positively selected sites (two in nsp3 and two in the spike) were identified in the BF.7 dataset, and two (one in ORF8 and one in the spike gene) were identified in the BQ.1.1 dataset. Mutation analysis revealed that R408S and N440K are very common in the spike of the BF.7 genomes, as well as L452R among BQ.1.1. N1329D and Q180H in nsp3 were found, respectively, at low and rare frequencies in BF.7, while I121L and I121T were found to be rare in ORF8 for BQ.1.1. The positively selected sites may have been driven by the selection for increased viral fitness, under circumstances of defined selective pressure, as well by host genetic factors.

15.
PLoS Pathog ; 7(11): e1002370, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22114554

RESUMO

In order to investigate the potential of voles to reproduce in vitro the efficiency of prion replication previously observed in vivo, we seeded protein misfolding cyclic amplification (PMCA) reactions with either rodent-adapted Transmissible Spongiform Encephalopathy (TSE) strains or natural TSE isolates. Vole brain homogenates were shown to be a powerful substrate for both homologous or heterologous PMCA, sustaining the efficient amplification of prions from all the prion sources tested. However, after a few serial automated PMCA (saPMCA) rounds, we also observed the appearance of PK-resistant PrP(Sc) in samples containing exclusively unseeded substrate (negative controls), suggesting the possible spontaneous generation of infectious prions during PMCA reactions. As we could not definitively rule out cross-contamination through a posteriori biochemical and biological analyses of de novo generated prions, we decided to replicate the experiments in a different laboratory. Under rigorous prion-free conditions, we did not observe de novo appearance of PrP(Sc) in unseeded samples of M109M and I109I vole substrates, even after many consecutive rounds of saPMCA and working in different PMCA settings. Furthermore, when positive and negative samples were processed together, the appearance of spurious PrP(Sc) in unseeded negative controls suggested that the most likely explanation for the appearance of de novo PrP(Sc) was the occurrence of cross-contamination during saPMCA. Careful analysis of the PMCA process allowed us to identify critical points which are potentially responsible for contamination events. Appropriate technical improvements made it possible to overcome PMCA pitfalls, allowing PrP(Sc) to be reliably amplified up to extremely low dilutions of infected brain homogenate without any false positive results even after many consecutive rounds. Our findings underline the potential drawback of ultrasensitive in vitro prion replication and warn on cautious interpretation when assessing the spontaneous appearance of prions in vitro.


Assuntos
Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas PrPSc/biossíntese , Proteínas PrPSc/química , Doenças Priônicas/genética , Príons/biossíntese , Animais , Arvicolinae , Encéfalo/metabolismo , Reações Falso-Positivas , Dobramento de Proteína
16.
Front Vet Sci ; 10: 1213990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795019

RESUMO

In the last 20 years, new zoonotic CoV strains have emerged (SARS-CoV, MERS-CoV, and SARS-CoV-2), and new species have also been reported in animals. In Europe, the Erinaceus coronavirus (EriCoV) was recently described in Erinaceus europaeus. However, information on the prevalence and duration of viral shedding is unknown. In this study, feces samples were collected from 102 European hedgehogs hosted in the Center for the Recovery of Wild Fauna in Rome and analyzed for the presence of EriCoV RNA by Reverse Transcription-PCR. In total, 45 animals (44.1%) resulted positive for EriCoV at the first sampling and 63 (61.7%) animals were positive at the follow-up, which was performed from the 3rd to the 86th day. The duration of fecal virus shedding showed a mean duration of 22.8 days and lasted up to 62 days. Eighteen hedgehogs showed intermittent viral shedding. Phylogenetic analysis showed a correlation with EriCoV strains reported in Germany, the United Kingdom, and northern Italy. None of the EriCoV sequences showed the CD200 ortholog insertion, previously observed in strains isolated in animals from northern Italy. Interestingly, all but one animal revealed the presence in their feces of the same EriCoV sequences, analyzing the short genomic region at 3' spike gene and 5' ORF3a 500bp fragment (100% nt.id.) in both first and follow-up samples. This result suggests that animals were infected with the same strain during their stay at the center. Our results confirm that EriCoV can persist in hedgehogs for a long period, underlining that hedgehogs are an important commensal reservoir for Merbecovirus. A long duration of viral shedding increases the likelihood that the virus will spread in the environment.

17.
Animals (Basel) ; 13(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36670816

RESUMO

The hepatitis E caused by the virus HEV of genotypes HEV-3 and HEV-4 is a zoonotic foodborne disease spread worldwide. HEV is currently classified into eight different genotypes (HEV-1-8). Genotypes HEV-3 and HEV-4 are zoonotic and are further divided into subtypes. Most of the information on HEV replication remains unknown due to the lack of an efficient cell cultivation system. Over the last couple of years, several protocols for HEV cultivation have been developed on different cell lines; even if they were troublesome, long, and scarcely reproducible, they offered the opportunity to study the replicative cycle of the virus. In the present study, we aimed to obtain a protocol ready to use viral stock in serum free medium that can be used with reduced time of growth and without any purification steps. The employed method allowed isolation and cell adaptation of four swine HEV-3 strains, belonging to three different subtypes. Phylogenetic analyses conducted on partial genome sequences of in vitro isolated strains did not reveal any insertion in the hypervariable region (HVR) of the genomes. A limited number of mutations was acquired in the genome during the virus growth in the partial sequences of Methyltransferase (Met) and ORF2 coding genes.

18.
EFSA J ; 21(4): e07936, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077299

RESUMO

The European Commission requested an analysis of the Chronic Wasting Disease (CWD) monitoring programme in Norway, Sweden, Finland, Iceland, Estonia, Latvia, Lithuania and Poland (9 January 2017-28 February 2022). Thirteen cases were detected in reindeer, 15 in moose and 3 in red deer. They showed two phenotypes, distinguished by the presence or absence of detectable disease-associated normal cellular prion protein (PrP) in lymphoreticular tissues. CWD was detected for the first time in Finland, Sweden and in other areas of Norway. In countries where the disease was not detected, the evidence was insufficient to rule out its presence altogether. Where cases were detected, the prevalence was below 1%. The data also suggest that the high-risk target groups for surveillance should be revised, and 'road kill' removed. Data show that, in addition to differences in age and sex, there are differences in the prion protein gene (PRNP) genotypes between positive and negative wild reindeer. A stepwise framework has been proposed with expanded minimum background surveillance to be implemented in European countries with relevant cervid species. Additional surveillance may include ad hoc surveys for four different objectives, specific to countries with/without cases, focusing on parallel testing of obex and lymph nodes from adult cervids in high-risk target groups, sustained over time, using sampling units and a data-driven design prevalence. Criteria for assessing the probability of CWD presence have been outlined, based on the definition of the geographical area, an annual assessment of risk of introduction, sustained minimum background surveillance, training and engagement of stakeholders and a surveillance programme based on data-driven parameters. All positive cases should be genotyped. Sample sizes for negative samples have been proposed to detect and estimate the frequency of PRNP polymorphisms. Double-strand sequencing of the entire PRNP open reading frame should be undertaken for all selected samples, with data collated in a centralised collection system at EU level.

19.
Microorganisms ; 11(11)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-38004656

RESUMO

The SARS-CoV-2 Delta variant of concern (VOC) was often associated with serious clinical course of the COVID-19 disease. Herein, we investigated the selective pressure, gene flow and evaluation on the frequencies of mutations causing amino acid substitutions in the Delta variant in three Italian regions. A total of 1500 SARS-CoV-2 Delta genomes, collected in Italy from April to October 2021 were investigated, including a subset of 596 from three Italian regions. The selective pressure and the frequency of amino acid substitutions and the prediction of their possible impact on the stability of the proteins were investigated. Delta variant dataset, in this study, identified 68 sites under positive selection: 16 in the spike (23.5%), 11 in nsp2 (16.2%) and 10 in nsp12 (14.7%) genes. Three of the positive sites in the spike were located in the receptor-binding domain (RBD). In Delta genomes from the three regions, 6 changes were identified as very common (>83.7%), 4 as common (>64.0%), 21 at low frequency (2.1%-25.0%) and 29 rare (≤2.0%). The detection of positive selection on key mutations may represent a model to identify recurrent signature mutations of the virus.

20.
J Gen Virol ; 93(Pt 2): 450-455, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21994325

RESUMO

Procedures for discriminating scrapie from bovine spongiform encephalopathy (BSE) in sheep are relevant to ascertain whether BSE has entered the sheep population. This study was aimed at investigating whether the suitability of an official EU discriminative method is affected by the sheep PrP genotype and route of infection.


Assuntos
Western Blotting/métodos , Técnicas de Laboratório Clínico/métodos , Encefalopatia Espongiforme Bovina/diagnóstico , Príons/análise , Príons/genética , Scrapie/diagnóstico , Medicina Veterinária/métodos , Animais , Bovinos , Genótipo , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA