Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 23(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037004

RESUMO

Ruminants produce large amounts of the greenhouse gas, methane, which can be reduced by supplementing feed with products that contain anti-methanogenic compounds, such as the solid winemaking by-product, grape marc. The aim of this study was to exploit compositional differences in grape marc to better understand the roles of condensed tannin and fatty acids in altering methanogenesis in a ruminant system. Grape marc samples varying in tannin extractability, tannin size and subunit composition, and fatty acid or tannin concentrations were selected and incubated in rumen fluid using an in vitro batch fermentation approach with a concentrate-based control. Four distinct experiments were designed to investigate the effects on overall fermentation and methane production. Generally, fatty acid concentration in grape marc was associated with decreased total gas volumes and volatile fatty acid concentration, whereas increased condensed tannin concentration tended to decrease methane percentage. Smaller, extractable tannin was more effective at reducing methane production, without decreasing overall gas production. In conclusion, fatty acids and tannin concentration, and tannin structure in grape marc play a significant role in the anti-methanogenic effect of this by-product when studied in vitro. These results should be considered when developing strategies to reduce methane in ruminants by feeding grape marc.


Assuntos
Ácidos Graxos , Metano/biossíntese , Taninos , Vitis/química , Ração Animal , Animais , Ácidos Graxos/química , Fermentação , Polimerização , Ruminantes , Taninos/química
2.
J Sci Food Agric ; 97(4): 1367-1372, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27376199

RESUMO

BACKGROUND: The industrial processing of olive generates a high quantity of by-products. The objective of this study was to examine the effects of products derived from olive trees, i.e. leaves, fruits or kernels as a sole substrate (part A), and crude extract from leaves combined with a substrate (part B) on rumen microbial fermentation in an in vitro batch fermentation system. In this study, total gas production, methane production, and concentrations of volatile fatty acids (VFA) and ammonia in ruminal fluid were measured. RESULTS: In part A, in vitro fermentation of leaves or fruits yielded a gas and total VFA production that were comparable with control substrate, while most of them produced significantly less methane (up to 55.6%) when compared to control substrate. In part B, amongst leaf extracts, only addition of chloroform extract reduced methane production, which was also associated with a decrease (P < 0.01) in gas production. This effect was associated with a significant reduction (P < 0.01) in acetate to propionate ratio and ammonia production, but not in reduction in VFA concentrations. CONCLUSION: Olive leaf and olive leaf chloroform extract reduced ammonia production and increased the molar proportion of propionate in the rumen and can assist in developing novel feed additives for methane mitigation from the rumen. © 2016 Society of Chemical Industry.


Assuntos
Fermentação , Frutas , Metano/biossíntese , Olea , Extratos Vegetais/farmacologia , Folhas de Planta , Rúmen/efeitos dos fármacos , Ácido Acético/metabolismo , Amônia/metabolismo , Animais , Digestão/efeitos dos fármacos , Indústria Alimentícia , Técnicas In Vitro , Propionatos/metabolismo , Rúmen/metabolismo , Rúmen/microbiologia
3.
Anaerobe ; 39: 173-82, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060275

RESUMO

Methanogenic archaea (methanogens) are common inhabitants of the mammalian intestinal tract. In ruminants, they are responsible for producing abundant amounts of methane during digestion of food, but selected bioactive plants and compounds may inhibit this activity. Recently, we have identified that, Biserrula pelecinus L. (biserrula) is one such plant and the current study investigated the specific anti-methanogenic activity of the plant. Bioassay-guided extraction and fractionation, coupled with in vitro fermentation batch culture were used to select the most bioactive fractions of biserrula. The four fractions were then tested against five species of methanogens grown in pure culture. Fraction bioactivity was assessed by measuring methane production and amplification of the methanogen mcrA gene. Treatments that showed bioactivity were subcultured in fresh broth without the bioactive fraction to distinguish between static and cidal effects. All four fractions were active against pure cultures, but the F2 fraction was the most consistent inhibitor of both methane production and cell growth, affecting four species of methanogens and also producing equivocal-cidal effects on the methanogens. Other fractions had selective activity affecting only some methanogens, or reducing either methane production or methanogenic cell growth. In conclusion, the anti-methanogenic activity of biserrula can be linked to compounds contained in selected bioactive fractions, with the F2 fraction strongly affecting key rumen methanogens. Further study is required to identify the specific plant compounds in biserrula that are responsible for the anti-methanogenic activity. These findings will help devise novel strategies to control methanogen populations and activity in the rumen, and consequently contribute in reducing greenhouse gas emissions from ruminants.


Assuntos
Euryarchaeota/efeitos dos fármacos , Fabaceae/química , Metano/antagonistas & inibidores , Extratos Vegetais/farmacologia , Animais , Técnicas de Cultura Celular por Lotes , Bovinos , Fracionamento Químico/métodos , Meios de Cultura/química , Euryarchaeota/crescimento & desenvolvimento , Euryarchaeota/isolamento & purificação , Euryarchaeota/metabolismo , Fermentação/efeitos dos fármacos , Metano/biossíntese , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Rúmen/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA