Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 473: 116582, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295732

RESUMO

A high incidence of thymic lymphoma has been noted in mice deficient of retinoid-related orphan receptor γ2 (RORγ2), which is required for differentiation of naïve CD4+ T cells into TH17 cells. Using a RORγ homozygous knockout (KO) mouse model of thymic lymphoma, we characterized this tumor progression and investigated the utility of 5-hydroxymethylcytosine (5hmC) signatures as a non-invasive circulating biomarker for early prediction of malignancy. No evidence for malignancy was noted in the wild-type mice, while primary thymic lymphoma with multi-organ metastasis was observed microscopically in 97% of the homozygous RORγ KO mice. The severity of thymic lymphoma was not age-dependent in the KO mice of 2 to 4 months old. Differential enrichment of 5hmC in thymic DNA and plasma cell-free DNA (cfDNA) was compared across different stages of tumor progression. Random forest modeling of plasma cfDNA achieved good predictivity (AUC = 0.74) in distinguishing early non-metastatic thymic lymphoma compared to cancer-free controls, while perfect predictivity was achieved with advanced multi-organ metastatic disease (AUC = 1.00). Lymphoid-specific genes involved in thymocyte selection during T cell development (Themis, Tox) were differentially enriched in both plasma and thymic tissue. This could help in differentiating thymic lymphoma from other tumors commonly detected in rodent carcinogenicity studies used in pharmaceutical drug development to inform human malignancy risk. Overall, these results provide a proof-of-concept for using circulating cfDNA profiles in rodent carcinogenicity studies for early risk assessment of novel pharmaceutical targets.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Animais , Humanos , Lactente , Camundongos , Ácidos Nucleicos Livres/genética , Camundongos Knockout , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares
2.
Kidney Int ; 100(3): 672-683, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34051265

RESUMO

Kidney fibrosis constitutes the shared final pathway of nearly all chronic nephropathies, but biomarkers for the non-invasive assessment of kidney fibrosis are currently not available. To address this, we characterize five candidate biomarkers of kidney fibrosis: Cadherin-11 (CDH11), Sparc-related modular calcium binding protein-2 (SMOC2), Pigment epithelium-derived factor (PEDF), Matrix-Gla protein, and Thrombospondin-2. Gene expression profiles in single-cell and single-nucleus RNA-sequencing (sc/snRNA-seq) datasets from rodent models of fibrosis and human chronic kidney disease (CKD) were explored, and Luminex-based assays for each biomarker were developed. Plasma and urine biomarker levels were measured using independent prospective cohorts of CKD: the Boston Kidney Biopsy Cohort, a cohort of individuals with biopsy-confirmed semiquantitative assessment of kidney fibrosis, and the Seattle Kidney Study, a cohort of patients with common forms of CKD. Ordinal logistic regression and Cox proportional hazards regression models were used to test associations of biomarkers with interstitial fibrosis and tubular atrophy and progression to end-stage kidney disease and death, respectively. Sc/snRNA-seq data confirmed cell-specific expression of biomarker genes in fibroblasts. After multivariable adjustment, higher levels of plasma CDH11, SMOC2, and PEDF and urinary CDH11 and PEDF were significantly associated with increasing severity of interstitial fibrosis and tubular atrophy in the Boston Kidney Biopsy Cohort. In both cohorts, higher levels of plasma and urinary SMOC2 and urinary CDH11 were independently associated with progression to end-stage kidney disease. Higher levels of urinary PEDF associated with end-stage kidney disease in the Seattle Kidney Study, with a similar signal in the Boston Kidney Biopsy Cohort, although the latter narrowly missed statistical significance. Thus, we identified CDH11, SMOC2, and PEDF as promising non-invasive biomarkers of kidney fibrosis.


Assuntos
Insuficiência Renal Crônica , Biomarcadores , Caderinas , Proteínas de Ligação ao Cálcio , Progressão da Doença , Proteínas do Olho , Fibrose , Humanos , Rim , Fatores de Crescimento Neural , Osteonectina/genética , Estudos Prospectivos , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/genética , Serpinas
3.
J Pharmacol Exp Ther ; 376(1): 12-20, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33115823

RESUMO

Faced with the health and economic consequences of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the biomedical community came together to identify, diagnose, prevent, and treat the novel disease at breathtaking speeds. The field advanced from a publicly available viral genome to a commercialized globally scalable diagnostic biomarker test in less than 2 months, and first-in-human dosing with vaccines and repurposed antivirals followed shortly thereafter. This unprecedented efficiency was driven by three key factors: 1) international multistakeholder collaborations, 2) widespread data sharing, and 3) flexible regulatory standards tailored to meet the urgency of the situation. Learning from the remarkable success achieved during this public health crisis, we are proposing a biomarker-centric approach throughout the drug development pipeline. Although all therapeutic areas would benefit from end-to-end biomarker science, efforts should be prioritized to areas with the greatest unmet medical needs, including neurodegenerative diseases, chronic lower respiratory diseases, metabolic disorders, and malignant neoplasms. SIGNIFICANCE STATEMENT: Faced with the unprecedented threat of the severe acute respiratory syndrome coronavirus 2 pandemic, the biomedical community collaborated to develop a globally scalable diagnostic biomarker (viral DNA) that catalyzed therapeutic development at breathtaking speeds. Learning from this remarkable efficiency, we propose a multistakeholder biomarker-centric approach to drug development across therapeutic areas with unmet medical needs.


Assuntos
Antivirais/uso terapêutico , COVID-19/epidemiologia , Defesa Civil/tendências , Desenvolvimento de Medicamentos/tendências , Descoberta de Drogas/tendências , Animais , Biomarcadores/análise , COVID-19/genética , Defesa Civil/métodos , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Marcadores Genéticos/genética , Humanos , Pandemias , Tratamento Farmacológico da COVID-19
4.
Drug Metab Dispos ; 47(8): 802-808, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31123036

RESUMO

Limited understanding of species differences in kidney transporters is a critical knowledge gap for prediction of drug-induced acute kidney injury, drug interaction, and pharmacokinetics in humans. Here, we report protein abundance data of 19 transporters in the kidney cortex across five species (human, monkey, dog, rat, and mouse). In general, the abundance of all of the 19 membrane transporters was higher in preclinical species compared with human except for multidrug resistance protein 1 (MDR1), organic cation transporter (OCT) 3, and OCTN1. In nonhuman primate, the total abundance of 12 transporters for which absolute data were available was 2.1-fold higher (P = 0.025) relative to human but the percentage of distribution of these transporters was identical in both species. Multidrug resistance-associated protein (MRP) 4, OCTN2, organic anion transporter (OAT) 2, sodium/potassium-transporting ATPase, MRP3, SGLT2, OAT1, MRP1, MDR1, and OCT2 were expressed differently with cross-species variabilities of 8.2-, 7.4-, 6.1-, 5.9-, 5.4-, 5.2-, 4.1-, 3.3-, and 2.8-fold, respectively. Sex differences were only significant in rodents and dog. High protein-protein correlation was observed in OAT1 versus MRP2/MRP4 as well as OCT2 versus MATE1 in human and monkey. The cross-species and sex-dependent protein abundance data are important for animal to human scaling of drug clearance as well as for mechanistic understanding of kidney physiology and derisking of kidney toxicity for new therapeutic candidates in drug development.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Córtex Renal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Eliminação Renal , Animais , Cães , Feminino , Humanos , Macaca fascicularis , Masculino , Proteínas de Membrana Transportadoras/análise , Camundongos , Proteômica , Ratos , Especificidade da Espécie
5.
J Am Soc Nephrol ; 29(12): 2820-2833, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361326

RESUMO

BACKGROUND: The death of epithelial cells in the proximal tubules is thought to be the primary cause of AKI, but epithelial cells that survive kidney injury have a remarkable ability to proliferate. Because proximal tubular epithelial cells play a predominant role in kidney regeneration after damage, a potential approach to treat AKI is to discover regenerative therapeutics capable of stimulating proliferation of these cells. METHODS: We conducted a high-throughput phenotypic screen using 1902 biologically active compounds to identify new molecules that promote proliferation of primary human proximal tubular epithelial cells in vitro. RESULTS: The primary screen identified 129 compounds that stimulated tubular epithelial cell proliferation. A secondary screen against these compounds over a range of four doses confirmed that eight resulted in a significant increase in cell number and incorporation of the modified thymidine analog EdU (indicating actively proliferating cells), compared with control conditions. These eight compounds also stimulated tubular cell proliferation in vitro after damage induced by hypoxia, cadmium chloride, cyclosporin A, or polymyxin B. ID-8, an inhibitor of dual-specificity tyrosine-phosphorylation-regulated kinase 1A (DYRK1A), was the top candidate identified as having a robust proproliferative effect in two-dimensional culture models as well as a microphysiologic, three-dimensional cell culture system. Target engagement and genetic knockdown studies and RNA sequencing confirmed binding of ID-8 to DYRK1A and upregulation of cyclins and other cell cycle regulators, leading to epithelial cell proliferation. CONCLUSIONS: We have identified a potential first-in-class compound that stimulates human kidney tubular epithelial cell proliferation after acute damage in vitro.


Assuntos
Túbulos Renais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Injúria Renal Aguda/tratamento farmacológico , Técnicas de Cultura de Células/métodos , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células Cultivadas , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Ensaios de Triagem em Larga Escala , Humanos , Túbulos Renais/citologia , Túbulos Renais/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Medicina Regenerativa , Quinases Dyrk
6.
J Am Soc Nephrol ; 28(12): 3579-3589, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28814511

RESUMO

Phospholipase D4 (PLD4), a single-pass transmembrane glycoprotein, is among the most highly upregulated genes in murine kidneys subjected to chronic progressive fibrosis, but the function of PLD4 in this process is unknown. Here, we found PLD4 to be overexpressed in the proximal and distal tubular epithelial cells of murine and human kidneys after fibrosis. Genetic silencing of PLD4, either globally or conditionally in proximal tubular epithelial cells, protected mice from the development of fibrosis. Mechanistically, global knockout of PLD4 modulated innate and adaptive immune responses and attenuated the upregulation of the TGF-ß signaling pathway and α1-antitrypsin protein (a serine protease inhibitor) expression and downregulation of neutrophil elastase (NE) expression induced by obstructive injury. In vitro, treatment with NE attenuated TGF-ß-induced accumulation of fibrotic markers. Furthermore, therapeutic targeting of PLD4 using specific siRNA protected mice from folic acid-induced kidney fibrosis and inhibited the increase in TGF-ß signaling, decrease in NE expression, and upregulation of mitogen-activated protein kinase signaling. Immunoprecipitation/mass spectrometry and coimmunoprecipitation experiments confirmed that PLD4 binds three proteins that interact with neurotrophic receptor tyrosine kinase 1, a receptor also known as TrkA that upregulates mitogen-activated protein kinase. PLD4 inhibition also prevented the folic acid-induced upregulation of this receptor in mouse kidneys. These results suggest inhibition of PLD4 as a novel therapeutic strategy to activate protease-mediated degradation of extracellular matrix and reverse fibrosis.


Assuntos
Rim/patologia , Fosfolipase D/metabolismo , Animais , Matriz Extracelular/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Ácido Fólico/efeitos adversos , Biblioteca Gênica , Inativação Gênica , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Sistema Imunitário , Rim/metabolismo , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/metabolismo , Receptor trkA/metabolismo , Transdução de Sinais , Regulação para Cima
7.
J Biol Chem ; 291(27): 14085-14094, 2016 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-27129280

RESUMO

RNA-binding proteins (RBPs) are recognized as key posttranscriptional regulators that not only modulate the spatiotemporal expression of genes during organism development but also regulate disease pathogenesis. Very limited information exists on the potential role of RBPs in modulating kidney fibrosis, which is a major hallmark of chronic kidney disease. Here, we report a novel mechanism in kidney fibrosis involving a RBP, Musashi homologue 1 (Msi1), which is expressed in tubular epithelial cells. Using two mechanistically distinct mouse models of kidney fibrosis, we show that Msi1 protein levels are significantly down-regulated in the kidneys following fibrosis. We found that Msi1 functions by negatively regulating the translation of its target mRNAs, p21 and Numb, whose protein levels are markedly increased in kidney fibrosis. Also, Msi1 overexpression and knockdown in kidney epithelial cells cause p21- and Numb-mediated cell cycle arrest. Furthermore, we observed that Numb looses its characteristic membrane localization in fibrotic kidneys and therefore is likely unable to inhibit Notch resulting in tubular cell death. Oleic acid is a known inhibitor of Msi1 and injecting oleic acid followed by unilateral ureteral obstruction surgery in mice resulted in enhanced fibrosis compared with the control group, indicating that inhibiting Msi1 activity renders the mice more susceptible to fibrosis. Given that deregulated fatty acid metabolism plays a key role in kidney fibrosis, these results demonstrate a novel connection between fatty acid and Msi1, an RNA-binding protein, in kidney fibrosis.


Assuntos
Fibrose/fisiopatologia , Nefropatias/fisiopatologia , Proteínas do Tecido Nervoso/fisiologia , Proteína Oncogênica p21(ras)/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Proteínas de Ligação a RNA/fisiologia , Animais , Células HEK293 , Humanos , Camundongos
8.
Clin Chem ; 63(9): 1515-1526, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28667184

RESUMO

BACKGROUND: The prevalence of chronic kidney disease (CKD) is increasing, leading to significant morbidity and mortality. Kidney biopsy remains the gold standard for diagnosing the underlying etiology of CKD, but the procedure carries complication risks. The aim of this study was to identify novel noninvasive biomarkers correlating with kidney function and histopathology in biopsy-proven CKD patients. METHODS: We profiled 2402 urinary microRNAs (miRNAs) to identify and confirm differentially expressed miRNAs associated with kidney function and histopathology in patients with diabetic nephropathy (n = 58) or lupus nephritis (n = 89), important etiologies of CKD, compared with healthy controls (n = 93 and 119, respectively). Top performing miRNAs were then measured in 2 independent multi-institutional cohorts of patients with diabetes mellitus with (n = 74) or without nephropathy (n = 71) and systemic lupus erythematosus with (n = 86) or without (n = 37) nephritis. RESULTS: In patients with diabetic nephropathy, miR-2861, miR-1915-3p, and miR-4532 were down-regulated (>10-fold, P < 0.0001) and were associated with estimated glomerular filtration rate (P < 0.01) and interstitial fibrosis/tubular atrophy (P < 0.05). The c-statistics for miR-2861, miR-1915-3p, and miR-4532 were 0.91, 0.86, and 0.85, respectively. In lupus nephritis patients, miR-3201 and miR-1273e were down-regulated (>3-fold, P < 0.0001) and associated with endocapillary glomerular inflammation (P < 0.01), with c-statistics of 0.97 and 0.91, respectively. CONCLUSIONS: We have identified novel miRNAs that correlate with histopathological lesions and functional markers of kidney damage to facilitate sensitive, specific, and noninvasive detection of diabetic nephropathy and lupus nephritis.


Assuntos
Biomarcadores/análise , Nefropatias Diabéticas/diagnóstico , Nefrite Lúpica/diagnóstico , MicroRNAs/genética , Adulto , Biomarcadores/urina , Período de Replicação do DNA , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/fisiopatologia , Feminino , Humanos , Nefrite Lúpica/genética , Nefrite Lúpica/fisiopatologia , Masculino , MicroRNAs/urina , Reprodutibilidade dos Testes , Transcriptoma
9.
Arch Toxicol ; 91(8): 2781-2797, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28501916

RESUMO

Organ damage and resulting pathologies often involve multiple deregulated pathways. MicroRNAs (miRNAs) are short, non-coding RNAs that regulate a multitude of genes at the post-transcriptional level. Since their discovery over two decades ago, miRNAs have been established as key players in the molecular mechanisms of mammalian biology including the maintenance of normal homeostasis and the regulation of disease pathogenesis. In recent years, there has been substantial progress in innovative techniques to measure miRNAs along with advances in targeted delivery of agents modulating their expression. This has expanded the scope of miRNAs from being important mediators of cell signaling to becoming viable quantitative biomarkers and therapeutic targets. Currently, miRNA therapeutics are in clinical trials for multiple disease areas and vast numbers of patents have been filed for miRNAs involved in various pathological states. In this review, we summarize miRNAs involved in organ injury and repair, specifically with regard to organs that are the most susceptible to injury: the liver, heart and kidney. In addition, we review the current state of knowledge on miRNA biology, miRNA biomarkers and nucleotide-based therapeutics designed to target miRNAs to prevent organ injury and promote repair.


Assuntos
Cardiopatias/genética , Nefropatias/genética , Hepatopatias/genética , MicroRNAs/genética , Animais , Marcadores Genéticos/genética , Cardiopatias/metabolismo , Humanos , Nefropatias/metabolismo , Hepatopatias/metabolismo , MicroRNAs/administração & dosagem , Transdução de Sinais/genética
10.
J Am Soc Nephrol ; 27(4): 1015-28, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26260164

RESUMO

Nephrotoxicity due to drugs and environmental chemicals accounts for significant patient mortality and morbidity, but there is no high throughput in vitro method for predictive nephrotoxicity assessment. We show that primary human proximal tubular epithelial cells (HPTECs) possess characteristics of differentiated epithelial cells rendering them desirable to use in such in vitro systems. To identify a reliable biomarker of nephrotoxicity, we conducted multiplexed gene expression profiling of HPTECs after exposure to six different concentrations of nine human nephrotoxicants. Only overexpression of the gene encoding heme oxygenase-1 (HO-1) significantly correlated with increasing dose for six of the compounds, and significant HO-1 protein deregulation was confirmed with each of the nine nephrotoxicants. Translatability of HO-1 increase across species and platforms was demonstrated by computationally mining two large rat toxicogenomic databases for kidney tubular toxicity and by observing a significant increase in HO-1 after toxicity using an ex vivo three-dimensional microphysiologic system (kidney-on-a-chip). The predictive potential of HO-1 was tested using an additional panel of 39 mechanistically distinct nephrotoxic compounds. Although HO-1 performed better (area under the curve receiver-operator characteristic curve [AUC-ROC]=0.89) than traditional endpoints of cell viability (AUC-ROC for ATP=0.78; AUC-ROC for cell count=0.88), the combination of HO-1 and cell count further improved the predictive ability (AUC-ROC=0.92). We also developed and optimized a homogenous time-resolved fluorescence assay to allow high throughput quantitative screening of nephrotoxic compounds using HO-1 as a sensitive biomarker. This cell-based approach may facilitate rapid assessment of potential nephrotoxic therapeutics and environmental chemicals.


Assuntos
Heme Oxigenase-1/análise , Nefropatias/induzido quimicamente , Testes de Toxicidade , Biomarcadores/análise , Células Cultivadas , Heme Oxigenase-1/biossíntese , Heme Oxigenase-1/genética , Humanos , Nefropatias/enzimologia , Nefropatias/genética , Túbulos Renais Proximais/citologia , Testes de Toxicidade/métodos
11.
J Am Soc Nephrol ; 27(6): 1702-13, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26449608

RESUMO

CKD is the gradual, asymptomatic loss of kidney function, but current tests only identify CKD when significant loss has already happened. Several potential biomarkers of CKD have been reported, but none have been approved for preclinical or clinical use. Using RNA sequencing in a mouse model of folic acid-induced nephropathy, we identified ten genes that track kidney fibrosis development, the common pathologic finding in patients with CKD. The gene expression of all ten candidates was confirmed to be significantly higher (approximately ten- to 150-fold) in three well established, mechanistically distinct mouse models of kidney fibrosis than in models of nonfibrotic AKI. Protein expression of these genes was also high in the folic acid model and in patients with biopsy-proven kidney fibrosis. mRNA expression of the ten genes increased with increasing severity of kidney fibrosis, decreased in response to therapeutic intervention, and increased only modestly (approximately two- to five-fold) with liver fibrosis in mice and humans, demonstrating specificity for kidney fibrosis. Using targeted selected reaction monitoring mass spectrometry, we detected three of the ten candidates in human urine: cadherin 11 (CDH11), macrophage mannose receptor C1 (MRC1), and phospholipid transfer protein (PLTP). Furthermore, urinary levels of each of these three proteins distinguished patients with CKD (n=53) from healthy individuals (n=53; P<0.05). In summary, we report the identification of urinary CDH11, MRC1, and PLTP as novel noninvasive biomarkers of CKD.


Assuntos
Nefropatias/genética , Rim/patologia , Análise de Sequência de RNA , Animais , Fibrose/genética , Marcadores Genéticos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Biossíntese de Proteínas
12.
Toxicol Appl Pharmacol ; 312: 42-52, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26707937

RESUMO

Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250mg/kgi.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (>2-fold, p<0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibrotic injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl2), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K2Cr2O7) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K2Cr2O7 and CdCl2 treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression.


Assuntos
Injúria Renal Aguda/metabolismo , MicroRNAs/genética , RNA/genética , Animais , Fibrose/metabolismo , Ácido Fólico/efeitos adversos , Hibridização In Situ , Túbulos Renais Proximais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C
13.
Biometals ; 29(1): 131-46, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26715107

RESUMO

Cadmium (Cd) is a nephrotoxic environmental pollutant that causes insidious injury to the proximal tubule that results in severe polyuria and proteinuria. Cystatin C is a low molecular weight protein that is being evaluated as a serum and urinary biomarker for various types of ischemic and nephrotoxic renal injury. The objective of the present study was to determine if cystatin C might be a useful early biomarker of Cd nephrotoxicity. Male Sprague-Dawley rats were given daily injections of Cd for up to 12 weeks. At 3, 6, 9 and 12 weeks, urine samples were analyzed for cystatin C, protein, creatinine, ß2 microglobulin and kidney injury molecule-1. The results showed that Cd caused a significant increase in the urinary excretion of cystatin C that occurred 3-4 weeks before the onset of polyuria and proteinuria. Serum levels of cystatin C were not altered by Cd. Immunolabeling studies showed that Cd caused the relocalization of cystatin C from the cytoplasm to the apical surface of the epithelial cells of the proximal tubule. The Cd-induced changes in cystatin C labelling paralleled those of the brush border transport protein, megalin, which has been implicated as a mediator of cystatin C uptake in the proximal tubule. These results indicate that Cd increases the urinary excretion of cystatin C, and they suggest that this effect may involve disruption of megalin-mediated uptake of cystatin C by epithelial cells of the proximal tubule.


Assuntos
Biomarcadores/urina , Cádmio/toxicidade , Cistatina C/urina , Túbulos Renais Proximais/metabolismo , Animais , Biomarcadores/sangue , Cádmio/administração & dosagem , Moléculas de Adesão Celular/sangue , Creatinina/sangue , Cistatina C/sangue , Poluentes Ambientais , Humanos , Túbulos Renais Proximais/lesões , Túbulos Renais Proximais/patologia , Masculino , Ratos
14.
J Am Soc Nephrol ; 25(1): 105-18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24158981

RESUMO

Kidney injury molecule-1 (KIM-1)/T cell Ig and mucin domain-containing protein-1 (TIM-1) is upregulated more than other proteins after AKI, and it is highly expressed in renal damage of various etiologies. In this capacity, KIM-1/TIM-1 acts as a phosphatidylserine receptor on the surface of injured proximal tubular epithelial cells, mediating phagocytosis of apoptotic cells, and it may also act as a costimulatory molecule for immune cells. Despite recognition of KIM-1 as an important therapeutic target for kidney disease, the regulators of KIM-1 transcription in the kidney remain unknown. Using a bioinformatics approach, we identified upstream regulators of KIM-1 after AKI. In response to tubular injury in rat and human kidneys or oxidant stress in human proximal tubular epithelial cells (HPTECs), KIM-1 expression increased significantly in a manner that corresponded temporally and regionally with increased phosphorylation of checkpoint kinase 1 (Chk1) and STAT3. Both ischemic and oxidant stress resulted in a dramatic increase in reactive oxygen species that phosphorylated and activated Chk1, which subsequently bound to STAT3, phosphorylating it at S727. Furthermore, STAT3 bound to the KIM-1 promoter after ischemic and oxidant stress, and pharmacological or genetic induction of STAT3 in HPTECs increased KIM-1 mRNA and protein levels. Conversely, inhibition of STAT3 using siRNAs or dominant negative mutants reduced KIM-1 expression in a kidney cancer cell line (769-P) that expresses high basal levels of KIM-1. These observations highlight Chk1 and STAT3 as critical upstream regulators of KIM-1 expression after AKI and may suggest novel approaches for therapeutic intervention.


Assuntos
Injúria Renal Aguda/metabolismo , Moléculas de Adesão Celular/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Quinases/metabolismo , Receptores Virais/metabolismo , Fator de Transcrição STAT3/metabolismo , Injúria Renal Aguda/genética , Injúria Renal Aguda/terapia , Animais , Moléculas de Adesão Celular/genética , Linhagem Celular , Quinase 1 do Ponto de Checagem , Biologia Computacional , Dano ao DNA , Regulação da Expressão Gênica , Receptor Celular 1 do Vírus da Hepatite A , Humanos , Rim/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Estresse Oxidativo , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Wistar , Receptores Virais/genética , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/genética
15.
Am J Physiol Renal Physiol ; 306(3): F333-43, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24226520

RESUMO

Belgrade rats carry a disabling mutation in the iron transporter divalent metal transporter 1 (DMT1). Although DMT1 plays a major role in intestinal iron absorption, the transporter is also highly expressed in the kidney, where its function remains unknown. The goal of this study was to characterize renal physiology of Belgrade rats. Male Belgrade rats died prematurely with ∼50% survival at 20 wk of age. Necropsy results indicated marked glomerular nephritis and chronic end-stage renal disease. By 15 wk of age, Belgrade rats displayed altered renal morphology associated with sclerosis and fibrosis. Creatinine clearance was significantly lower compared with heterozygote littermates. Urinary biomarkers of kidney injury, including albumin, fibrinogen, and kidney injury molecule-1, were significantly elevated. Pilot morphological studies suggest that nephrogenesis is delayed in Belgrade rat pups due to their low iron status and fetal growth restriction. Such defects in renal development most likely underlie the compromised renal metabolism observed in adult b/b rats. Belgrade rat kidney nonheme iron levels were not different from controls but urinary iron and transferrin levels were higher. These results further implicate an important role for the transporter in kidney function not only in iron reabsorption but also in glomerular filtration of the serum protein.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Ferro/metabolismo , Rim/fisiologia , Insuficiência Renal/genética , Animais , Proteínas de Transporte de Cátions/genética , Moléculas de Adesão Celular/metabolismo , Creatinina/urina , Rim/embriologia , Longevidade , Masculino , Ratos , Ratos Endogâmicos F344 , Transferrina/urina
16.
Am J Physiol Renal Physiol ; 307(4): F471-84, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25007874

RESUMO

Fibrinogen (Fg) has been implicated in the pathogenesis of several fibrotic disorders by acting as a profibrotic ligand for a variety of cellular surface receptors and by modulating the provisional fibrin matrix formed after injury. We demonstrated increased renal Fg expression after unilateral ureteral obstruction and folic acid (FA) nephropathy in mice, respectively. Urinary Fg excretion was also increased in FA nephropathy. Using in vitro and in vivo approaches, our results suggested that IL-6 mediates STAT3 activation in kidney fibrosis and that phosphorylated (p)STAT3 binds to Fgα, Fgß, and Fgγ promoters in the kidney to regulate their transcription. Genetically modified Fg heterozygous mice (∼75% of normal plasma Fg levels) exhibited only 3% kidney interstitial fibrosis and tubular atrophy after FA nephropathy compared with 24% for wild-type mice. Fibrinogenolysis through Ancrod administration after FA reduced interstitial fibrosis more than threefold compared with vehicle-treated control mice. Mechanistically, we show that Fg acts synergistically with transforming growth factor (TGF)-ß1 to induce fibroblast proliferation and activates TGF-ß1/pSMAD2 signaling. This study offers increased understanding of Fg expression and molecular interactions with TGF-ß1 in the progression to kidney fibrosis and, importantly, indicates that fibrinogenolytics like Ancrod present a treatment opportunity for a yet intractable disease.


Assuntos
Fibrinogênio/metabolismo , Nefropatias/prevenção & controle , Rim/patologia , Fator de Transcrição STAT3/metabolismo , Ancrod/uso terapêutico , Animais , Progressão da Doença , Fibrinogênio/urina , Fibrose , Células Hep G2 , Humanos , Interleucina-6/metabolismo , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia
17.
Clin Chem ; 60(9): 1158-73, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24407912

RESUMO

BACKGROUND: The recent revolutionary advances made in genome-wide sequencing technology have transformed biology and molecular diagnostics, allowing new sRNA (small RNA) classes to be discovered as potential disease-specific biological indicators. Cell-free microRNAs (miRNAs) have been shown to exist stably in a wide spectrum of body fluids and their expression profiles have been shown to reflect an assortment of physiological conditions, underscoring the utility of this new class of molecules to function as noninvasive biomarkers of disease. CONTENT: We summarize information on the known mechanisms of miRNA protection and release into extracellular space and compile the current literature on extracellular miRNAs that have been investigated as biomarkers of 20 different cancers, 11 organ damage conditions and 10 diverse disease states. We also discuss the various strategies involved in the miRNA biomarker discovery workflow and provide a critical opinion on the impediments faced by this advancing field that need to be overcome in the laboratory. SUMMARY: The field of miRNA-centered diagnostics is still in its infancy, and basic questions with regard to the exact role of miRNAs in the pathophysiology of diseases, and the mechanisms of their release from affected cells into biological fluids are yet to be completely understood. Nevertheless, these noninvasive micromarkers have immense potential in translational medicine not only for use in monitoring the efficacy and safety of therapeutic regimens but also to guide the diagnosis of diseases, to determine the risk of developing diseases or conditions, and more importantly, to inform treatment options.


Assuntos
Biomarcadores/sangue , MicroRNAs/sangue , Neoplasias/diagnóstico , Humanos
19.
Toxicol Sci ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995842

RESUMO

Drug-induced kidney injury (DIKI) is of significant concern, both during drug development and in clinical practice. We report a patient-centric approach for clinical implementation of the FDA-qualified kidney safety biomarker panel, highlighting Phase 1 and 2 trials for candidate therapeutics in Pfizer's portfolio (PFE-1 and PFE-2, respectively) that induced renal tubular injury in rat toxicity studies. Clusterin (CLU), cystatin-C (CysC), kidney injury molecule-1 (KIM-1), N-acetyl-beta-D-glucosaminidase (NAG), neutrophil gelatinase-associated lipocalin (NGAL), and osteopontin (OPN) were measured in urine samples from i) Phase 1 healthy volunteers (HVs; n = 12) dosed with PFE-1, ii) Phase 2 rheumatoid arthritis patients (RA; n = 266) dosed with PFE-2, iii) lupus patients on standard-of-care therapies (n = 121), and iv) healthy volunteers (n = 60). The FDA-defined composite measure (CM), calculated as the geometric mean response across the 6 biomarkers, was increased ∼30% in HVs administered 100 mg PFE-1 relative to placebo, providing evidence of DIKI. In contrast, the CM for RA patients dosed with PFE-2 was comparable to placebo controls, helping to de-risk the concern for DIKI at clinically relevant doses. Comparing individual biomarker concentrations across disease states revealed that CLU, KIM-1, NAG, NGAL, and OPN are elevated in the urine of RA and lupus patients (those without severe active proliferative lupus nephritis) relative to HVs. Overall, these case studies demonstrate the value of using the FDA-qualified kidney biomarker panel to guide risk assessment, dose selection, and clinical decision making for novel therapeutics, both in HVs and patient populations.

20.
Clin Chem ; 59(12): 1742-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24153252

RESUMO

BACKGROUND: Extracellular microRNAs (miRNAs) have been proposed as potentially robust and stable biomarkers of various disease conditions. The primary objective of this study was to identify miRNAs differentially occurring in the urine that could serve as potential biomarkers of acute kidney injury (AKI), because traditional AKI markers have limitations with respect to sensitivity, specificity, and timeliness of diagnosis. METHODS: We profiled 1809 miRNAs in pooled urine samples from 6 patients with AKI and from 6 healthy controls. We measured the 378 stably detectable miRNAs in the 12 samples individually and selected the top 7 miRNAs that were most different in the urine of patients with AKI compared with the non-AKI control individuals. These miRNAs were assessed in a larger cohort of patients with AKI (n = 98: 71 AKI patients in the intensive care unit (ICU) and 27 kidney transplantation patients with biopsy-proven tubular injury) and patients without AKI (n = 97: 74 healthy volunteers and 23 ICU patients without AKI). RESULTS: We identified 4 miRNAs capable of significantly differentiating patients with AKI from individuals without AKI: miR-21 (P = 0.0005), miR-200c (P < 0.0001), miR-423 (P = 0.001), and miR-4640 (P = 0.0355). The combined cross-validated area under the ROC curve for these 4 miRNAs was 0.91. The imprecision with respect to miRNA isolation and reverse transcription efficiency was <9% across 224 samples. CONCLUSIONS: In this study we determined the entire miRNome of human urine and identified a panel of miRNAs that are both detectable noninvasively and diagnostically sensitive indicators of kidney damage.


Assuntos
Injúria Renal Aguda/urina , Perfilação da Expressão Gênica , MicroRNAs/urina , Estudos de Coortes , Estudos Transversais , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA