Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Sci ; 8(8): 5636-5643, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28989601

RESUMO

Alzheimer's disease (AD) is a multifactorial disease that is characterized by the formation of intracellular neurofibrillary tangles and extracellular amyloid-ß (Aß) plaque deposits. Increased oxidative stress, metal ion dysregulation, and the formation of toxic Aß peptide oligomers are all considered to contribute to the etiology of AD. In this work we have developed a series of ligands that are multi-target-directed in order to address several disease properties. 2-(1-(3-Hydroxypropyl)-1H-1,2,3-triazol-4-yl)phenol (POH), 2-(1-(2-morpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PMorph), and 2-(1-(2-thiomorpholinoethyl)-1H-1,2,3-triazol-4-yl)phenol (PTMorph) have been synthesized and screened for their antioxidant capacity, Cu-binding affinity, interaction with the Aß peptide and modulation of Aß peptide aggregation, and the ability to limit Aß1-42-induced neurotoxicity in human neuronal culture. The synthetic protocol and structural variance incorporated via click chemistry, highlights the influence of R-group modification on ligand-Aß interactions and neuroprotective effects. Overall, this study demonstrates that the phenol-triazole ligand scaffold can target multiple factors associated with AD, thus warranting further therapeutic development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA