Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Neurol ; 66(4): 472-84, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19847912

RESUMO

OBJECTIVE: This study questions whether increased dopamine (DA) turnover in nigral neurons leads to formation of Lewy bodies (LBs), the characteristic alpha-synuclein-containing cytoplasmic inclusion of Parkinson disease (PD). METHODS: Mice with targeted deletion of the dopamine D(2) receptor gene (D(2)R[-/-]) have higher striatal and nigral dopamine turnover and elevated oxidative stress. These mice were examined for evidence of histological, biochemical, and gene expression changes consistent with a synucleinopathy. RESULTS: LB-like cytoplasmic inclusions containing alpha-synuclein and ubiquitin were present in substantia nigra pars compacta (SNpc) neurons of older D(2)R(-/-) mice, and were also occasionally seen in aged wild-type mice. These inclusions displaced the nucleus of affected cells and were eosinophilic. Diffuse cytosolic alpha-synuclein immunoreactivity in SNpc neurons increased with age in both wild-type and D(2)R(-/-) mice, most likely because of redistribution of alpha-synuclein from striatal terminals to SNpc cell bodies. Gene and protein expression studies indicated endoplasmic reticulum (ER) stress and changes in trafficking and autophagic pathways in D(2)R(-/-) SNpc. These changes were accompanied by a loss of DA terminals in the dorsal striatum, although there was no evidence of progressive cell death in the SNpc. INTERPRETATION: Increased sprouting and DA turnover, as observed in PD and D(2)R(-/-) mice, augments LB-like inclusions and axonal degeneration of dopaminergic neurons. These changes are associated with ER stress and autophagy.


Assuntos
Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Receptores de Dopamina D2/deficiência , Receptores de Dopamina D2/genética , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo/genética , Doença de Parkinson/fisiopatologia , Receptores de Dopamina D2/fisiologia , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/fisiopatologia , alfa-Sinucleína/metabolismo
2.
J Bone Miner Res ; 34(8): 1451-1460, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30883870

RESUMO

Advancing age is accompanied by a reduction in bone formation and remodeling imbalance, which produces microstructural deterioration. This may be partly caused by a diversion of mesenchymal cells towards adipocytes rather than osteoblast lineage cells. We hypothesized that microstructural deterioration would be associated with an increased marrow adiposity, and each of these traits would be independently associated with nonvertebral fractures and improve discrimination of women with fractures from controls over that achieved by femoral neck (FN) areal bone mineral density (aBMD) alone. The marrow adiposity and bone microstructure were quantified from HR-pQCT images of the distal tibia and distal radius in 77 women aged 40 to 70 years with a recent nonvertebral fracture and 226 controls in Melbourne, Australia. Marrow fat measurement from HR-pQCT images was validated using direct histologic measurement as the gold standard, at the distal radius of 15 sheep, with an agreement (R2 = 0.86, p < 0.0001). Each SD higher distal tibia marrow adiposity was associated with 0.33 SD higher cortical porosity, and 0.60 SD fewer, 0.24 SD thinner, and 0.72 SD more-separated trabeculae (all p < 0.05). Adjusted for age and FN aBMD, odds ratios (ORs) (95% CI) for fracture per SD higher marrow adiposity and cortical porosity were OR, 3.39 (95% CI, 2.14 to 5.38) and OR, 1.79 (95% CI, 1.14 to 2.80), respectively. Discrimination of women with fracture from controls improved when cortical porosity was added to FN aBMD and age (area under the receiver-operating characteristic curve [AUC] 0.778 versus 0.751, p = 0.006) or marrow adiposity was added to FN aBMD and age (AUC 0.825 versus 0.751, p = 0.002). The model including FN aBMD, age, cortical porosity, trabecular thickness, and marrow adiposity had an AUC = 0.888. Results were similar for the distal radius. Whether marrow adiposity and cortical porosity indices improve the identification of women at risk for fractures requires validation in prospective studies. © 2019 American Society for Bone and Mineral Research.


Assuntos
Adiposidade , Densidade Óssea , Medula Óssea , Colo do Fêmur , Fraturas Ósseas , Adulto , Idoso , Austrália , Medula Óssea/metabolismo , Medula Óssea/patologia , Feminino , Colo do Fêmur/metabolismo , Colo do Fêmur/patologia , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Humanos , Pessoa de Meia-Idade , Porosidade
3.
Spine J ; 18(3): 491-506, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29055739

RESUMO

BACKGROUND CONTEXT: Neural compression associated with lumbar disc herniation is usually managed surgically by microdiscectomy. However, 10%-20% of patients re-present with debilitating back pain, and approximately 15% require further surgery. PURPOSE: Using an ovine model of microdiscectomy, the present study investigated the relative potential of pentosan polysulfate-primed mesenchymal progenitor cells (pMPCs) or MPC alone implanted into the lesion site to facilitate disc recovery. STUDY DESIGN: An ovine model of lumbar microdiscectomy was used to compare the relative outcomes of administering MPCs or pMPCs to the injury site postsurgery. METHODS: At baseline 3T magnetic resonance imaging (MRI) of 18 adult ewes was undertaken followed by annular microdiscectomy at two lumbar disc levels. Sheep were randomized into three groups (n=6). The injured controls received no further treatment. Defects of the treated groups were implanted with a collagen sponge and MPC (5×105 cells) or pMPC (5×105 cells). After 6 months, 3T MRI and standard radiography were performed. Spinal columns were dissected, individual lumbar discs were sectioned horizontally, and nucleus pulposus (NP) and annulus fibrosus (AF) regions were assessed morphologically and histologically. The NP and AF tissues were dissected into six regions and analyzed biochemically for their proteoglycans (PGs), collagen, and DNA content. RESULTS: Both the MPC- and pMPC-injected groups exhibited less reduction in disc height (p<.05) and lower Pfirrmann grades (p≤.001) compared with the untreated injury controls, but morphologic scores for the pMPC-injected discs were lower (p<.05). The PG content of the AF injury site region (AF1) of pMPC discs was higher than MPC and injury control AF1 (p<.05). At the AF1 and contralateral AF2 regions, the DNA content of pMPC discs was significantly lower than injured control discs and MPC-injected discs. Histologic and birefringent microscopy revealed increased structural organization and reduced degeneration in pMPC discs compared with MPC and the injured controls. CONCLUSIONS: In an ovine model 6 months after administration of pMPCs to the injury site disc PG content and matrix organization were improved relative to controls, suggesting pMPCs' potential as a postsurgical adjunct for limiting progression of disc degeneration after microdiscectomy.


Assuntos
Discotomia/métodos , Degeneração do Disco Intervertebral/cirurgia , Disco Intervertebral/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Poliéster Sulfúrico de Pentosana/farmacologia , Regeneração , Animais , Células Cultivadas , Disco Intervertebral/fisiologia , Região Lombossacral/cirurgia , Células-Tronco Mesenquimais/efeitos dos fármacos , Ovinos
5.
Chem Sci ; 6(10): 5383-5393, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29449912

RESUMO

Metals have a number of important roles within the brain. We used laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to map the three-dimensional concentrations and distributions of transition metals, in particular iron (Fe), copper (Cu) and zinc (Zn) within the murine brain. LA-ICP-MS is one of the leading analytical tools for measuring metals in tissue samples. Here, we present a complete data reduction protocol for measuring metals in biological samples, including the application of a pyramidal voxel registration technique to reproducibly align tissue sections. We used gold (Au) nanoparticle and ytterbium (Yb)-tagged tyrosine hydroxylase antibodies to assess the co-localisation of Fe and dopamine throughout the entire mouse brain. We also examined the natural clustering of metal concentrations within the murine brain to elucidate areas of similar composition. This clustering technique uses a mathematical approach to identify multiple 'elemental clusters', avoiding user bias and showing that metal composition follows a hierarchical organisation of neuroanatomical structures. This work provides new insight into the distinct compartmentalisation of metals in the brain, and presents new avenues of exploration with regard to region-specific, metal-associated neurodegeneration observed in several chronic neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA