Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36835028

RESUMO

α3ß4 Nicotinic acetylcholine receptor (nAChR) has been recognized as an emerging biomarker for the early detection of drug addiction. Herein, α3ß4 nAChR ligands were designed and synthesized to improve the binding affinity and selectivity of two lead compounds, (S)-QND8 and (S)-T2, for the development of an α3ß4 nAChR tracer. The structural modification was achieved by retaining the key features and expanding the molecular structure with a benzyloxy group to increase the lipophilicity for blood-brain barrier penetration and to extend the ligand-receptor interaction. The preserved key features are a fluorine atom for radiotracer development and a p-hydroxyl motif for ligand-receptor binding affinity. Four (R)- and (S)-quinuclidine-triazole (AK1-AK4) were synthesized and the binding affinity, together with selectivity to α3ß4 nAChR subtype, were determined by competitive radioligand binding assay using [3H]epibatidine as a radioligand. Among all modified compounds, AK3 showed the highest binding affinity and selectivity to α3ß4 nAChR with a Ki value of 3.18 nM, comparable to (S)-QND8 and (S)-T2 and 3069-fold higher affinity to α3ß4 nAChR in comparison to α7 nAChR. The α3ß4 nAChR selectivity of AK3 was considerably higher than those of (S)-QND8 (11.8-fold) and (S)-T2 (294-fold). AK3 was shown to be a promising α3ß4 nAChR tracer for further development as a radiotracer for drug addiction.


Assuntos
Receptores Nicotínicos , Transtornos Relacionados ao Uso de Substâncias , Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Ligantes , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Transtornos Relacionados ao Uso de Substâncias/diagnóstico por imagem , Quinuclidinas/química , Quinuclidinas/farmacologia , Triazóis/química , Triazóis/farmacologia
2.
Int J Mol Sci ; 24(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175777

RESUMO

Bacterial meningitis remains one of the most prevalent infectious diseases worldwide. Although advances in medical care have improved mortality and morbidity, neurological complications remain high. Therefore, aside from antibiotics, therapeutic adjuvants targeting neuroinflammation are essential to combat the long-term neuronal sequelae of bacterial meningitis. In the present study, we propose (-)-dendroparishiol as a potential add-on therapy to improve neuroinflammation associated with bacterial meningitis. The biological activity of (-)-dendroparishiol was first predicted by computational analysis and further confirmed in vitro using a cell-based assay with LPS-induced BV-2 microglial cells. Biological pathways involved with (-)-dendroparishiol were identified by applying network pharmacology. Computational predictions of biological activity indicated possible attenuation of several inflammatory processes by (-)-dendroparishiol. In LPS-induced BV-2 microglial cells, (-)-dendroparishiol significantly reduced the expression of inflammatory mediators: iNOS, NO, COX-2, IL-6, and TNF-α. Molecular docking results demonstrated the potential iNOS and COX-2 inhibitory activity of (-)-dendroparishiol. Network pharmacological analysis indicated the plausible role of (-)-dendroparishiol in biological processes involved in oxidative stress and neuroinflammation with enrichment in neuroinflammatory pathways. Overall, this study provides scientific evidence for the potential application of (-)-dendroparishiol in the management of bacterial meningitis-associated neuroinflammation.


Assuntos
Inflamação , Meningites Bacterianas , Humanos , Inflamação/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/efeitos adversos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Microglia/metabolismo , Meningites Bacterianas/metabolismo , NF-kappa B/metabolismo
3.
Molecules ; 28(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36838664

RESUMO

A simple and reliable ultra-high-performance liquid chromatographic (UHPLC) method was developed and validated for determination of tetrahydrocurcumin diglutaric acid (TDG) and applied for evaluation of its bioaccessibility. The analytical method was validated to demonstrate as a stability-indicating assay (SIA) according to the ICH Q2(R1) guidelines under various force degradation conditions including thermal degradation, moisture, acid and base hydrolysis, oxidation, and photolysis. The developed chromatographic condition could completely separate all degradants from the analyte of interest. The method linearity was verified in the range of 0.4-12 µg/mL with the coefficient of determination (r2) > 0.995. The accuracy and precision of the method provided %recovery in the range of 98.9-104.2% and %RSD lower than 4.97%, respectively. The limit of detection and quantitation were found to be 0.25 µg/mL and 0.40 µg/mL, respectively. This method has been successfully applied for the bioaccessibility assessment of TDG with the bioaccessibility of TDG approximately four fold greater than THC in simulated gastrointestinal fluid. The validated SIA method can also benefit the quality control of TDG raw materials in pharmaceutical and nutraceutical development.


Assuntos
Curcumina , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção , Estabilidade de Medicamentos , Reprodutibilidade dos Testes
4.
J Nat Prod ; 85(7): 1816-1825, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35707966

RESUMO

Batatasin III is a stilbenoid compound present in a wide variety of Dendrobium species. Although the pharmacological efficacy of batatasin III has been reported in several disease models, its antinociceptive efficacy and central nervous system (CNS) side effects remain unknown. Thus, this study examined the effects of batatasin III on pain-like behaviors in mouse models of formalin- and lipopolysaccharide (LPS)-induced inflammatory pain. The results revealed a significant antinociceptive effect of batatasin III in both models, as 50 mg/kg batatasin III elicited comparable antinociception as 10 mg/kg indomethacin. Further, the anti-inflammatory effect of batatasin III was assessed in LPS-induced RAW 264.7 macrophages and BV-2 microglial cells. The compound significantly reduced the levels of inflammatory mediators (nitric oxide, TNF-α, and IL-6) in LPS-stimulated cells in a concentration-dependent manner. Following efficacy evaluations, the potential CNS side effects of batatasin III were evaluated using the rotarod test and the Laboratory Animal Behavior Observation, Registration, and Analysis System. Batatasin III-treated mice exhibited comparable forced, spontaneous, and general locomotive behaviors to vehicle-treated mice, indicating no potential CNS side effects. Overall, this study demonstrated the preclinical antinociceptive efficacy and CNS safety of batatasin III, suggesting its potential role in the development of new analgesics.


Assuntos
Dendrobium , Estilbenos , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Dor/induzido quimicamente , Dor/tratamento farmacológico
5.
Molecules ; 27(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35745046

RESUMO

Oxyresveratrol (OXY) has been reported for its anti-inflammatory activity; however, the pharmaceutical applications of this compound are limited by its physicochemical properties and poor pharmacokinetic profiles. The use of an ester prodrug is a promising strategy to overcome these obstacles. In previous researches, several carboxylate esters of OXY were synthesized and oxyresveratrol tetraacetate (OXY-TAc) was reported to possess anti-melanogenic and anti-skin-aging properties. In this study, in addition to OXY-TAc, two novel ester prodrugs of OXY, oxyresveratrol tetrapropionate (OXY-TPr), and oxyresveratrol tetrabutyrate (OXY-TBu), were synthesized. Results from the Caco-2-permeation assay suggested that synthesized ester prodrugs can improve the membrane-permeation ability of OXY. The OXY-TAc exhibited the most significant profile, then this prodrug was chosen to observe anti-inflammatory activities with lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Our results showed that OXY-Tac significantly alleviated secretion of several pro-inflammatory mediators (nitric oxide (NO), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α)), mitigated expression of enzyme-regulated inflammation (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)), and suppressed the MAPK cascades. Interestingly, the observed anti-inflammatory activities of OXY-TAc were more remarkable than those of its parent compound OXY. Taken together, we demonstrated that OXY-TAc improved physicochemical and pharmacokinetic profiles and enhanced the pharmacological effects of OXY. Hence, the results in the present study would strongly support the clinical utilities of OXY-TAc for the treatment of inflammation-related disorders.


Assuntos
Lipopolissacarídeos , Pró-Fármacos , Animais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Células CACO-2 , Ciclo-Oxigenase 2/metabolismo , Ésteres/metabolismo , Ésteres/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Extratos Vegetais , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Células RAW 264.7 , Estilbenos
6.
Molecules ; 26(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34443456

RESUMO

Guanidinyl tryptophan derivatives TGN1, TGN2, TGN3, and TGN4 were synthesized, and these compounds were shown to possess in vitro inhibitory activity for amyloid aggregation in a previous study. Nevertheless, the influence of the TGN series of compounds on the binding and permeation behaviors of an Aß monomer to the cell membranes was not elucidated. In this study, we investigated the effect of compounds in the TGN series on the behavior of an Aß monomer regarding its toxicity toward the bilayer lipid membrane using molecular dynamics (MD) simulation. MD simulations suggest that TGN4 is a potential agent that can interfere with the movement of the Aß monomer into the membrane. The MM-GBSA result demonstrated that TGN4 exhibits the highest affinity to the Aß1-42 monomer but has the lowest affinity to the bilayer. Moreover, TGN4 also contributes to a decrease in the binding affinity between the Aß1-42 monomer and the POPC membrane. Regarding the results of the binding mode and conformational analyses, a high number of amino-acid residues were shown to provide the binding interactions between TGN4 and the Aß1-42 monomer. TGN4 also reduces the conformational transition of the Aß1-42 monomer by means of interacting with the monomer. The present study presents molecular-level insights into how the TGN series of compounds affect the membrane adsorption and the conformational transition of the Aß1-42 monomer, which could be valuable for the further development of new anti-Alzheimer agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/química , Membrana Celular/metabolismo , Guanidina/uso terapêutico , Triptofano/uso terapêutico , Adesividade , Adsorção , Guanidina/química , Humanos , Ligantes , Bicamadas Lipídicas/química , Lipídeos/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Conformação Proteica , Estrutura Secundária de Proteína , Triptofano/química , Água/química
7.
Molecules ; 26(17)2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34500831

RESUMO

A simple, precise, and accurate reversed-phase ultra-performance liquid chromatographic (UPLC) method was developed and validated for the determination of a mycophenolic acid-curcumin (MPA-CUR) conjugate in buffer solutions. Chromatographic separation was performed on a C18 column (2.1 × 50 mm id, 1.7 µm) with a gradient elution system of water and acetonitrile, each containing 0.1% formic acid, at a flow rate of 0.6 mL/min. The column temperature was controlled at 33 °C. The compounds were detected simultaneously at the maximum wavelengths of mycophenolic acid (MPA), 254 nm, and curcumin (CUR), or MPA-CUR, at 420 nm. The developed method was validated according to the ICH Q2(R1) guidelines. The linear calibration curves of the assay ranged from 0.10 to 25 µg/mL (r2 ≥ 0.995, 1/x2 weighting factor), with a limit of detection and a limit of quantitation of 0.04 and 0.10 µg/mL, respectively. The accuracy and precision of the developed method were 98.4-101.6%, with %CV < 2.53%. The main impurities from the specificity test were found to be MPA and CUR. Other validation parameters, including robustness and solution stability, were acceptable under the validation criteria. Forced degradation studies were conducted under hydrolytic (acidic and alkaline), oxidative, thermal, and photolytic stress conditions. MPA-CUR was well separated from MPA, CUR, and other unknown degradation products. The validated method was successfully applied in chemical kinetic studies of MPA-CUR in different buffer solutions.


Assuntos
Cromatografia Líquida/métodos , Curcumina/química , Cinética , Ácido Micofenólico/química , Temperatura
8.
Molecules ; 26(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809092

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder. The number of patients with AD is projected to reach 152 million by 2050. Donepezil, rivastigmine, galantamine, and memantine are the only four drugs currently approved by the United States Food and Drug Administration for AD treatment. However, these drugs can only alleviate AD symptoms. Thus, this research focuses on the discovery of novel lead compounds that possess multitarget regulation of AD etiopathology relating to amyloid cascade. The ascorbic acid structure has been designated as a core functional domain due to several characteristics, including antioxidant activities, amyloid aggregation inhibition, and the ability to be transported to the brain and neurons. Multifunctional ascorbic derivatives were synthesized by copper (I)-catalyzed azide-alkyne cycloaddition reaction (click chemistry). The in vitro and cell-based assays showed that compounds 2c and 5c exhibited prominent multifunctional activities as beta-secretase 1 inhibitors, amyloid aggregation inhibitors, and antioxidant, neuroprotectant, and anti-inflammatory agents. Significant changes in activities promoting neuroprotection and anti-inflammation were observed at a considerably low concentration at a nanomolar level. Moreover, an in silico study showed that compounds 2c and 5c were capable of being permeated across the blood-brain barrier by sodium-dependent vitamin C transporter-2.


Assuntos
Proteínas Amiloidogênicas/antagonistas & inibidores , Anti-Inflamatórios/farmacologia , Ácido Ascórbico/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Sítios de Ligação , Barreira Hematoencefálica , Células Cultivadas , Simulação por Computador , Ciclo-Oxigenase 2/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Óxido Nítrico Sintase Tipo II/genética , Células RAW 264.7 , Transportadores de Sódio Acoplados à Vitamina C/química , Transportadores de Sódio Acoplados à Vitamina C/metabolismo , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/química , Triazóis/farmacologia
9.
Biochem Biophys Res Commun ; 521(4): 977-983, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31727368

RESUMO

Lung cancer, one of the most commonly found carcinoma type, has the highest mortality rate in cancer patients worldwide. Therapeutic interventions targeting to lung cancer become remaining the world significant challenge. Recently, the α7-nicotinic acetylcholine receptor (α7-nAChR) was reported to play an important role in the mechanism underlying lung cancer progression, being intriguing drug target for lung cancer therapy. Hence, the top four α7-nAChR antagonists (QND7, PPRD10, PPRD11 and PPRD12) among our previously developed ligands were proceeded to the in vitro anti-cancer evaluations in non-small cell lung cancer (NSCLC) cell lines (H460 and A549). In this study, we found that QND7 exhibited the highest cytotoxic effect and induced cell apoptosis in both cell lines at a level comparable to cisplatin, whereas the PPRD compounds showed much lower cytotoxicity. Low doses of QND7 and PPRD11 were able to suppress H460 and A549 cell proliferation, whereas PPRD10 and PPRD12 were considered ineffective. In an in vitro wound healing assay, QND7-treatment showed the greatest suppression of H460 and A549 cell migration. The variations in the anti-cancer activities of PPRD compounds might be, at least in part of, their non-selective antagonisms to serotonin receptor (5-HT3) and α4ß2-nAChR. Further investigation revealed that QND7 was able to minimize protein kinase B/mammalian target of rapamycin (Akt/mTOR) activity, in correlating to its anti-cancer effects. These findings warrant QND7 for further preclinical evaluation and demonstrate the potential of α7-nAChR as cancer drug target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinuclidinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triazóis/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Quinuclidinas/química , Transdução de Sinais , Triazóis/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
10.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867140

RESUMO

The selective binding of six (S)-quinuclidine-triazoles and their (R)-enantiomers to nicotinic acetylcholine receptor (nAChR) subtypes α3ß4 and α7, respectively, were analyzed by in silico docking to provide the insight into the molecular basis for the observed stereospecific subtype discrimination. Homology modeling followed by molecular docking and molecular dynamics (MD) simulations revealed that unique amino acid residues in the complementary subunits of the nAChR subtypes are involved in subtype-specific selectivity profiles. In the complementary ß4-subunit of the α3ß4 nAChR binding pocket, non-conserved AspB173 through a salt bridge was found to be the key determinant for the α3ß4 selectivity of the quinuclidine-triazole chemotype, explaining the 47-327-fold affinity of the (S)-enantiomers as compared to their (R)-enantiomer counterparts. Regarding the α7 nAChR subtype, the amino acids promoting a however significantly lower preference for the (R)-enantiomers were the conserved TyrA93, TrpA149 and TrpB55 residues. The non-conserved amino acid residue in the complementary subunit of nAChR subtypes appeared to play a significant role for the nAChR subtype-selective binding, particularly at the heteropentameric subtype, whereas the conserved amino acid residues in both principal and complementary subunits are essential for ligand potency and efficacy.


Assuntos
Quinuclidinas/farmacologia , Receptores Nicotínicos/metabolismo , Triazóis/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Simulação por Computador , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Conformação Proteica , Quinuclidinas/química , Receptores Nicotínicos/química , Triazóis/química , Receptor Nicotínico de Acetilcolina alfa7/química
11.
Int J Mol Sci ; 21(16)2020 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784830

RESUMO

Curcumin diglutaric acid (CurDG), an ester prodrug of curcumin, has the potential to be developed as an anti-inflammatory agent due to its improved solubility and stability. In this study, the anti-inflammatory effects of CurDG were evaluated. The effects of CurDG on inflammatory mediators were evaluated in LPS-stimulated RAW 264.7 macrophage cells. CurDG reduced the increased levels of NO, IL-6, and TNF- α, as well as iNOS and COX-2 expression in cells to a greater extent than those of curcumin, along with the potent inhibition of MAPK (ERK1/2, JNK, and p38) activity. The anti-inflammatory effects were assessed in vivo by employing a carrageenan-induced mouse paw edema model. Oral administration of CurDG demonstrated significant anti-inflammatory effects in a dose-dependent manner in mice. The effects were significantly higher compared to those of curcumin at the corresponding doses (p < 0.05). Moreover, 25 mg/kg curcumin did not exert a significant anti-inflammatory effect for the overall time course as indicated by the area under the curve data, while the equimolar dose of CurDG produced significant anti-inflammatory effects comparable with 50, 100, and 200 mg/kg curcumin (p < 0.05). Similarly, CurDG significantly reduced the proinflammatory cytokine expression in paw edema tissues compared to curcumin (p < 0.05). These results provide the first experimental evidence for CurDG as a promising anti-inflammatory agent.


Assuntos
Anti-Inflamatórios/farmacologia , Curcumina/farmacologia , Ésteres/farmacologia , Pró-Fármacos/farmacologia , Animais , Anti-Inflamatórios/química , Carragenina , Sobrevivência Celular/efeitos dos fármacos , Curcumina/química , Citocinas/metabolismo , Edema/induzido quimicamente , Edema/metabolismo , Edema/prevenção & controle , Membro Posterior , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pró-Fármacos/química , Células RAW 264.7
12.
Molecules ; 25(18)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933086

RESUMO

Analgesic drugs in a combination-form can achieve greater efficacy with lesser side effects compared to either drug alone. The combination of drugs acting at different targets or mechanisms of action has been recognized as an alternative approach for achieving optimal analgesia. In this study, the analgesic effects of pregabalin (30, 60, 100, 200 mg/kg), curcumin (15, 30, 60, 100, 120 mg/kg), and 1:1 fixed-dose ratio of the pregabalin-curcumin combination were assessed using two acute nociceptive pain models, the acetic acid-induced writhing and tail-flick tests in mice. The pregabalin-curcumin combination produced a dose-dependent decrease in mean of writhes and an increase in the percentage of antinociception by the acetic acid-induced writhing test. In the tail-flick test, the combination also showed an improvement in antinociception indicated by the tail-flick latency, % antinociception, and area under the curve (AUC). Isobolographic analysis of interactions demonstrated a significant synergistic interaction effect between pregabalin and curcumin in both acute nociceptive pain models with the experimental ED50 below the predicted additive line and the combination index < 1. These findings demonstrate that the combination of pregabalin and curcumin exhibits a synergistic interaction in mouse models of acute nociceptive pain.


Assuntos
Analgésicos/administração & dosagem , Curcumina/administração & dosagem , Nociceptividade/efeitos dos fármacos , Pregabalina/administração & dosagem , Ácido Acético/química , Administração Oral , Animais , Área Sob a Curva , Comportamento , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Quimioterapia Combinada , Masculino , Camundongos , Camundongos Endogâmicos ICR , Manejo da Dor , Medição da Dor
13.
Bioorg Med Chem ; 25(3): 1195-1201, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043778

RESUMO

Alzheimer's disease (AD) is a common neurodegenerative disorder, one of the hallmarks of which is the deposition of aggregated ß-amyloid peptides (Aß40,42) as plaques in the brain. Oligomers of these peptides have been reported to be toxic and to inhibit neurite outgrowth, as evidenced by neurite dystrophy and significant loss of synaptic connectivity of neurons in the AD brain resulting in cognitive decline. These peptides also react with biological metal in the brain to generate free radicals, thereby aggravating neuronal cell injury and death. Herein, multifunctional triazole-based compounds acting on multiple targets, namely ß-secretase (BACE1), ß-amyloid peptides (Aß) as well as those possessing metal chelation and antioxidant properties, were developed and evaluated for neuritogenic activity in P19-derived neurons. At the non-cytotoxic concentration (1nM), all multifunctional compounds significantly enhanced neurite outgrowth. New bis-tryptoline triazole (BTT) increased the neurite length and neurite number, by 93.25% and 136.09% over the control, respectively. This finding demonstrates the ability of multifunctional compounds targeting Aß to enhance neurite outgrowth in addition to their neuroprotective action.


Assuntos
Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Carbolinas/farmacologia , Inibidores Enzimáticos/farmacologia , Neuritos/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Triazóis/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Carbolinas/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Camundongos , Estrutura Molecular , Neuritos/metabolismo , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade , Triazóis/química
14.
Molecules ; 21(9)2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27657036

RESUMO

Vascular endothelial growth factor receptor 2 (VEGFR2) is a vital target for therapeutic intervention in cancer. We have recently described a computer-based drug design for a small molecule VEGFR2 inhibitor named VH02 (1-((1-(1H-indazol-6-yl)-1H-1,2,3-triazol-4-yl)methyl)-3-(3-chloromethylphenyl)urea). This study aimed to further explore the anti-angiogenic activity of VH02 both in vitro and in vivo. The in vitro assays include cell viability, capillary-like tube formation, MMP activity, and western blot analyses of signaling through VEGFR2 while the in vivo anti-angiogenic response were performed to evaluate the effect on vascularization in Matrigel plug applied in C57BL/6L mice. VH02 reduced angiogenesis behavior of EA.hy926 including cell viability, migration, adhesion, capillary-like tube formation, and MMP-2 activity induced by VEGF. Furthermore, VH02 regulated angiogenesis by directly inhibiting VEGFR2 on Tyr1175 signaling pathway leading to the inhibition of Akt-mediated cell survival and migration. Disruption of phosphorylation at VEGFR2-Tyr1175 by VH02 abolished FAK-Tyr397 signaling but not phosphorylation of p38 MAPK. This suggests that blockade of FAK by VH02 apparently associated with reduction of endothelial cell motility. Actin cytoskeleton rearrangement was diminished by VH02 in human endothelial cells. The anti-angiogenic effect of VH02 was confirmed in the in vivo model, revealing the reduction of vascular density in Matrigel plug after VH02 treatment. Additionally, the pericyte-like cells surrounding blood vessels in the plugs were significantly reduced as well as vascular density and p-Akt intensity. Our findings indicate that VH02 successfully inhibits VEGF-induced angiogenesis both in vitro and in vivo models. The compound could be further developed as an antiangiogenesis agent for cancer therapy.

15.
ACS Pharmacol Transl Sci ; 7(1): 28-41, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38230275

RESUMO

Alpha7 nicotinic acetylcholine receptor (α7 nAChR) is an ion-gated calcium channel that plays a significant role in various aspects of cancer pathogenesis, particularly in lung cancer. Preclinical studies have elucidated the molecular mechanism underlying α7 nAChR-associated lung cancer proliferation, chemotherapy resistance, and metastasis. Understanding and targeting this mechanism are crucial for developing therapeutic interventions aimed at disrupting α7 nAChR-mediated cancer progression and improving treatment outcomes. Drug research and discovery have determined natural compounds and synthesized chemical antagonists that specifically target α7 nAChR. However, approved α7 nAChR antagonists for clinical use are lacking, primarily due to challenges related to achieving the desired selectivity, efficacy, and safety profiles required for effective therapeutic intervention. This comprehensive review provided insights into the molecular mechanisms associated with α7 nAChR and its role in cancer progression, particularly in lung cancer. Furthermore, it presents an update on recent evidence about α7 nAChR antagonists and addresses the challenges encountered in drug research and discovery in this field.

16.
Artigo em Inglês | MEDLINE | ID: mdl-39177808

RESUMO

OBJECTIVES: Substance use disorders (SUDs) represent a significant global health concern, demanding the development of effective pharmacological treatments. To address this, an investigation was conducted to examine the anti-addictive properties of two compounds, (S)-T1 and (S)-T2, which specifically target the α3ß4 nicotinic acetylcholine receptor (nAChR). METHODS: The effects of (S)-T1 and (S)-T2 on nicotine-induced conditioned place preference (CPP), locomotor activity and dopamine levels in particular brain regions associated to addiction were investigated and compared in male C57BL/6N mice. RESULTS: The results demonstrate that neither (S)-T1 nor (S)-T2 induced place conditioning or conditioned place aversion (CPA), suggesting the absence of rewarding or aversive effects. Both compounds significantly attenuated nicotine-induced CPP, with (S)-T1 exhibiting a dose-dependent effect. Furthermore, the co-administration of (S)-T2 (10 mg/kg) with nicotine markedly reduced locomotor activity compared to nicotine treatment alone. Additionally, dopamine analysis revealed that nicotine increased dopamine levels in the nucleus accumbens (NAc) and dorsal striatum, whereas the co-administration of (S)-T1 (1, 3, and 10 mg/kg) and (S)-T2 (10 mg/kg) significantly decreased dopamine levels in these brain regions. No significant effects were observed in the prefrontal cortex (PFC). CONCLUSIONS: These findings suggest that (S)-T1 and (S)-T2 hold promise for treating nicotine addiction by attenuating nicotine-induced CPP and modulating dopamine release in key reward-related brain regions. Further research is needed to gain insights into the underlying mechanisms behind their anti-addictive effects and substantiate their potential for treating nicotine addiction.

17.
J Drug Target ; 32(6): 587-605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38634290

RESUMO

Nanoparticle (NP) functionalization with specific ligands enhances targeted cancer therapy and imaging by promoting receptor recognition and improving cellular uptake. This review focuses on recent research exploring the interaction between cancer cell-expressed chemokine receptor 4 (CXCR4) and ligand-conjugated NPs, utilising small molecules, peptides, and antibodies. Active NP targeting has shown improved tumour targeting and reduced toxicity, enabling precision therapy and diagnosis. However, challenges persist in the clinical translation of targeted NPs due to issues with biological response, tumour accumulation, and maintaining NP quality at an industrial scale. Biological and intratumoral barriers further hinder efficient NP accumulation in tumours, hampering translatability. To address these challenges, the academic community is refocusing efforts on understanding NP biological fate and establishing robust preclinical models. Future studies should investigate NP-body interactions, develop computational models, and identify optimal preclinical models. Establishing central NP research databases and fostering collaboration across disciplines is crucial to expediting clinical translation. Overcoming these hurdles will unlock the transformative potential of CXCR4-ligand-NP conjugates in revolutionising cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Receptores CXCR4 , Receptores CXCR4/metabolismo , Receptores CXCR4/antagonistas & inibidores , Humanos , Neoplasias/tratamento farmacológico , Animais , Medicina de Precisão/métodos , Ligantes , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos
18.
EJNMMI Radiopharm Chem ; 9(1): 61, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162901

RESUMO

BACKGROUND: This study aimed to develop a novel positron emission tomography (PET) tracer, [68Ga]Ga-TD-01, for CXCR4 imaging. To achieve this goal, the molecular scaffold of TIQ15 was tuned by conjugation with the DOTA chelator to make it suitable for 68Ga radiolabeling. METHODS: A bifunctional chelator was prepared by conjugating the amine group of TIQ15 with p-NCS-Bz-DOTA, yielding TD-01, with a high yield (68.92%). TD-01 was then radiolabeled with 68Ga using 0.1 M ammonium acetate at 60 °C for 10 min. A 1-h dynamic small animal PET/MRI study of the labeled compound in GL261-luc2 tumor-bearing mice was performed, and brain tumor uptake was assessed. Blocking studies involved pre-administration of TIQ15 (10 mg/kg) 10 min before the PET procedure started. RESULTS: [68Ga]Ga-TD-01 exhibited a radiochemical yield (RCY) of 36.33 ± 1.50% (EOS), with a radiochemical purity > 99% and a molar activity of 55.79 ± 1.96 GBq/µmol (EOS). The radiotracer showed in vitro stability in PBS and human plasma for over 4 h. Biodistribution studies in healthy animals revealed favorable kinetics for subsequent PET pharmacokinetic modeling with low uptake in the brain and moderate uptake in lungs, intestines and spleen. Elimination could be assigned to a renal-hepatic pathway as showed by high uptake in kidneys, liver, and urinary bladder. Importantly, [68Ga]Ga-TD-01 uptake in glioblastoma (GBM)-bearing mice significantly decreased upon competition with TIQ15, with a baseline tumor-to-background ratios > 2.5 (20 min p.i.), indicating high specificity. CONCLUSION: The newly developed CXCR4 PET tracer, [68Ga]Ga-TD-01, exhibited a high binding inhibition for CXCR4, excellent in vitro stability, and favorable pharmacokinetics, suggesting that the compound is a promising candidate for full in vivo characterization of CXCR4 expression in GBM, with potential for further development as a tool in cancer diagnosis.

19.
Bioorg Med Chem Lett ; 23(10): 2962-7, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23562241

RESUMO

We report a novel VEGFR-2 inhibitor, developed by the back-to-front approach. Docking experiments indicated that the 3-chloromethylphenylurea motif of the lead compound occupied the back pocket of VEGFR-2 kinase. An attempt was made to enhance the binding affinity of 1 by expanding the structure to access the front pocket using a triazole linker. A library of 1,4-(disubstituted)-1H-1,2,3-triazoles were screened in silico, and one compound (VH02) was identified with an IC50 against VEGFR-2 of 0.56µM. VH02 showed antiangiogenic effects, inhibiting tube formation in HUVEC cells (EA.hy926) at 0.3µM, 13 times lower than its cytotoxic dose. These enzymatic and cellular activities suggest that VH02 has potential as a lead for further optimization.


Assuntos
Antineoplásicos/farmacologia , Indazóis/farmacologia , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indazóis/síntese química , Indazóis/química , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Compostos de Fenilureia/síntese química , Compostos de Fenilureia/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
Int J Pharm ; 640: 123037, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37172632

RESUMO

Nanotechnology plays an integral role in multimodal analgesia. In this study, we co-encapsulated metformin (Met) and curcumin (Cur) into chitosan/alginate (CTS/ALG) nanoparticles (NPs) at their synergistic drug ratio by applying response surface methodology. The optimized Met-Cur-CTS/ALG-NPs were achieved with Pluronic® F-127 2.33 % (w/v), Met 5.91 mg, and CTS:ALG mass ratio 0.05:1. The prepared Met-Cur-CTS/ALG-NPs had 243 nm particle size, -21.6 mV zeta potential, 32.6 and 44.2 % Met and Cur encapsulations, 19.6 and 6.8 % Met and Cur loading, respectively, and 2.9:1 Met:Cur mass ratio. Met-Cur-CTS/ALG-NPs displayed stability under simulated gastrointestinal (GI) fluid conditions and during storage. In vitro release study of Met-Cur-CTS/ALG-NPs in simulated GI fluids showed sustained release, with Met exhibiting Fickian diffusion and Cur demonstrating non-Fickian diffusion following the Korsmeyer-Peppas model. Met-Cur-CTS/ALG-NPs exhibited increased mucoadhesion and improved cellular uptake in Caco-2 cells. Additionally, Met-Cur-CTS/ALG-NPs exhibited better anti-inflammatory effects in lipopolysaccharide-stimulated RAW 264.7 macrophage and BV-2 microglial cells than the equivalent amount of the Met-Cur physical mixture, indicating a greater ability to modulate peripheral and central immune mechanisms of pain. In the mouse formalin-induced pain model, Met-Cur-CTS/ALG-NPs administered orally exhibited better attenuation of pain-like behaviors and proinflammatory cytokine release compared to the Met-Cur physical mixture. Furthermore, Met-Cur-CTS/ALG-NPs did not induce significant side effects in mice at therapeutic doses. Altogether, the present study establishes a CTS/ALG nano-delivery system for Met-Cur combination against pain with improved efficacy and safety.


Assuntos
Quitosana , Curcumina , Metformina , Nanopartículas , Humanos , Camundongos , Animais , Portadores de Fármacos , Curcumina/farmacologia , Quitosana/farmacologia , Células CACO-2 , Alginatos/farmacologia , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA