Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mem Inst Oswaldo Cruz ; 115: e200328, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33111750

RESUMO

Scientists have increasingly recognised that low methodological and analytical rigour combined with publish-or-perish incentives can make the published scientific literature unreliable. As a response to this, large-scale systematic replications of the literature have emerged as a way to assess the problem empirically. The Brazilian Reproducibility Initiative is one such effort, aimed at estimating the reproducibility of Brazilian biomedical research. Its goal is to perform multicentre replications of a quasi-random sample of at least 60 experiments from Brazilian articles published over a 20-year period, using a set of common laboratory methods. In this article, we describe the challenges of managing a multicentre project with collaborating teams across the country, as well as its successes and failures over the first two years. We end with a brief discussion of the Initiative's current status and its possible future contributions after the project is concluded in 2021.


Assuntos
Pesquisa Biomédica/tendências , Projetos de Pesquisa , Brasil , Reprodutibilidade dos Testes
2.
Anat Sci Educ ; 16(4): 644-653, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36565018

RESUMO

Anatomy is the branch discipline focused on studying organisms' physical structures and parts. Although technological advances are broadening the anatomy study, the practices of prosection and dissection of human cadavers and animals remain a primary teaching method. Despite the large body of research supporting its benefits, in some countries, cadaveric prosection and dissection of vertebrate animals in secondary education have been banned. In the current study, to prevent a lack of access to anatomical sciences education, the use of plastinated biological specimens was proposed for teaching practical biology in middle and high schools. The study was conducted in the 2014 academic year. Eighty-seven middle school students participated in the experiment. Groups consisted of: (i) theoretical classes only; (ii) theoretical class plus prosection with fresh specimens class; (iii) theoretical class plus expository with plastinated specimens classes. A post-test grade method was used to assess the impact of such tasks on the learning experience of each group. An ANOVA test and multiple regression model were used to analyze the effects of the variables of interest. Our study highlighted that students who underwent the plastination practical class had higher overall performance and a higher mean post-test grade than those in the pure theoretical group. A favorable effect of a positive self-knowledge assessment on the students' performance was found, supporting the self-efficacy model of human behavior. Thus, the current study provides further evidence to support the use of plastinated specimens as an effective teaching method in countries where dissection is not feasible.


Assuntos
Anatomia , Educação de Graduação em Medicina , Estudantes de Medicina , Humanos , Animais , Anatomia/educação , Inquéritos e Questionários , Aprendizagem , Dissecação/educação , Educação de Graduação em Medicina/métodos , Cadáver , Ensino , Currículo
3.
Brain Struct Funct ; 228(9): 2051-2066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37690044

RESUMO

Chronic social stress is a significant risk factor for several neuropsychiatric disorders, mainly major depressive disorder (MDD). In this way, patients with clinical depression may display many symptoms, including disrupted social behavior and anxiety. However, like many other psychiatric diseases, MDD has a very complex etiology and pathophysiology. Because social isolation is one of the multiple depression-inducing factors in humans, this study aims to understand better the link between social stress and MDD using an animal model based on social isolation after weaning, which is known to produce social stress in mice. We focused on cellular composition and white matter integrity to establish possible links with the abnormal social behavior that rodents isolated after weaning displayed in the three-chamber social approach and recognition tests. We used the isotropic fractionator method to assess brain cellularity, which allows us to robustly estimate the number of oligodendrocytes and neurons in dissected brain regions. In addition, diffusion tensor imaging (DTI) was employed to analyze white matter microstructure. Results have shown that post-weaning social isolation impairs social recognition and reduces the number of neurons and oligodendrocytes in important brain regions involved in social behavior, such as the anterior neocortex and the olfactory bulb. Despite the limitations of animal models of psychological traits, evidence suggests that behavioral impairments observed in patients might have similar biological underpinnings.


Assuntos
Transtorno Depressivo Maior , Substância Branca , Humanos , Camundongos , Animais , Imagem de Tensor de Difusão/métodos , Encéfalo , Isolamento Social
4.
Viruses ; 15(12)2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-38140578

RESUMO

Congenital Zika syndrome (CZS) is a set of birth defects caused by Zika virus (ZIKV) infection during pregnancy. Microcephaly is its main feature, but other brain abnormalities are found in CZS patients, such as ventriculomegaly, brain calcifications, and dysgenesis of the corpus callosum. Many studies have focused on microcephaly, but it remains unknown how ZIKV infection leads to callosal malformation. To tackle this issue, we infected mouse embryos in utero with a Brazilian ZIKV isolate and found that they were born with a reduction in callosal area and density of callosal neurons. ZIKV infection also causes a density reduction in PH3+ cells, intermediate progenitor cells, and SATB2+ neurons. Moreover, axonal tracing revealed that callosal axons are reduced and misrouted. Also, ZIKV-infected cultures show a reduction in callosal axon length. GFAP labeling showed that an in utero infection compromises glial cells responsible for midline axon guidance. In sum, we showed that ZIKV infection impairs critical steps of corpus callosum formation by disrupting not only neurogenesis, but also axon guidance and growth across the midline.


Assuntos
Microcefalia , Malformações do Sistema Nervoso , Complicações Infecciosas na Gravidez , Infecção por Zika virus , Zika virus , Gravidez , Feminino , Humanos , Animais , Camundongos , Corpo Caloso , Malformações do Sistema Nervoso/etiologia , Neurogênese
5.
J Neurosci Methods ; 326: 108392, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31394117

RESUMO

BACKGROUND: The Isotropic Fractionator (IF) is a method to determine the cellular composition of nervous tissue. It has been mostly applied to assess variation across species, where differences are expected to be large enough not to be masked by methodological error. However, understanding the sources of variation in the method is important if the goal is to detect smaller differences, for example, in same-species comparisons. Comparisons between different mice strains suggest that the IF is consistent enough to detect these differences. Nevertheless, the reliability of the method has not yet been examined directly. METHOD: In this study, we evaluate the reliability of the method for the determination of cellular and neuronal numbers of Swiss mice. We performed repeated cell counts of the same material by different experimenters to quantify different sources of variation. RESULTS: In total cell counts, we observed that for the cerebral cortex most of the variance was at the counter level. For the cerebellum, most of the variance is attributed to the sample itself. As for neurons, random error along with the immunostaining correspond to most of the variation, both in the cerebral cortex and in the cerebellum. Test-retest reliability coefficients were relatively high, especially for cell counts. CONCLUSIONS: Although biases between counters and random variation in staining could be problematic when aggregating data from different sources, we offer practical suggestions to improve the reliability of the method. While small, this study is a most needed step towards more precise measurement of the brain's cellular composition.


Assuntos
Contagem de Células , Cerebelo/citologia , Córtex Cerebral/citologia , Neurônios/citologia , Neurociências , Animais , Contagem de Células/métodos , Contagem de Células/normas , Camundongos , Neurociências/métodos , Neurociências/normas , Reprodutibilidade dos Testes
6.
Front Neuroanat ; 12: 90, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425626

RESUMO

The central nervous system is a highly complex network composed of various cell types, each one with different subpopulations. Each cell type has distinct roles for the functional operation of circuits, and ultimately, for brain physiology in general. Since the absolute number of each cell type is considered a proxy of its functional complexity, one approach to better understand how the brain works is to unravel its absolute cellularity and the quantitative relations between cell populations; in other words, how one population of cells is quantitatively structured, in relation to another. Oligodendrocytes are one of these cell types - mainly, they provide electric insulation to axons, optimizing action potential conduction. Their function has recently been revisited and their role extended, one example being their capability of providing trophic support to long axons. To determine the absolute cellularity of oligodendroglia, we have developed a protocol of oligodendrocyte quantification using the isotropic fractionator with a pan-marker for this cell type. We report a detailed assessment of specificity and universality of the oligodendrocyte transcription factor 2 (Olig2), through systematic confocal analyses of the C57BL/6 mouse brain. In addition, we have determined the absolute number (17.4 million) and proportion (about 20%) of this cell type in the brain (and in different brain regions), and tested if this population, at the intraspecific level, scales with the number of neurons in an allometric-based approach. Considering these numbers, oligodendrocytes proved to be the most numerous of glial cells in the mouse brain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA