Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 17(2): 299-315, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24372972

RESUMO

The Atacama Desert is one of the oldest and driest deserts in the world, and its hyper-arid core is described as 'the most barren region imaginable'. We used a combination of high-throughput sequencing and microscopy methods to characterize the endolithic microbial assemblages of halite pinnacles (salt rocks) collected in several hyper-arid areas of the desert. We found communities dominated by archaea that relied on a single phylotype of Halothece cyanobacteria for primary production. A few other phylotypes of salt-adapted bacteria and archaea, including Salinibacter, Halorhabdus, and Halococcus were major components of the halite communities, indicating specific adaptations to the unique halite environments. Multivariate statistical analyses of diversity metrics clearly separated the halite communities from that of the surrounding soil in the Yungay area. These analyses also revealed distribution patterns of halite communities correlated with atmospheric moisture. Microbial endolithic communities from halites exposed to coastal fogs and high relative humidity were more diverse; their archaeal and bacterial assemblages were accompanied by a novel algae related to oceanic picoplankton of the Mamiellales. In contrast, we did not find any algae in the Yungay pinnacles, suggesting that the environmental conditions in this habitat might be too extreme for eukaryotic photosynthetic life.


Assuntos
Archaea/classificação , Bactérias/classificação , Cianobactérias/classificação , Clima Desértico , Consórcios Microbianos , Biomassa , Temperatura Alta , Umidade , Pressão Osmótica , Sais
2.
Int Microbiol ; 13(2): 79-89, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20890842

RESUMO

SUMMARY: Molecular biology and microscopy techniques were used to characterize the microbial communities inside halite evaporites from different parts of the Atacama Desert. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the evaporite rocks harbor communities predominantly made up of cyanobacteria, along with heterotrophic bacteria and archaea. Different DGGE profiles were obtained for the different sites, with the exception of the cyanobacterial profile, in which only one phylotype was detected across the three sites examined. Chroococcidiopsis-like cells were the only cyanobacterial components of the rock samples, although the phylogenetic study revealed their closer genetic affinity to Halothece genera. Gene sequences of the heterotrophic bacteria and archaea indicated their proximity to microorganisms found in other hypersaline environments. Microorganisms colonizing these halites formed microbial aggregates in the pore spaces between halite crystals, where microbial interactions occur. In this exceptional, salty, porous halite rock habitat, microbial consortia with a community structure probably conditioned by the environmental conditions occupy special microhabitats with physical and chemical properties that promote their survival.


Assuntos
Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biodiversidade , Metagenoma , Microbiologia do Solo , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Clima Desértico , Eletroforese em Gel de Poliacrilamida , Genes de RNAr , Microscopia , Desnaturação de Ácido Nucleico , Filogenia , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico
3.
Environ Pollut ; 179: 185-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23685631

RESUMO

Anthropogenic N deposition poses a threat to European Mediterranean ecosystems. We combined data from an extant N deposition gradient (4.3-7.3 kg N ha⁻¹ yr⁻¹) from semiarid areas of Spain and a field experiment in central Spain to evaluate N deposition effects on soil fertility, function and cyanobacteria community. Soil organic N did not increase along the extant gradient. Nitrogen fixation decreased along existing and experimental N deposition gradients, a result possibly related to compositional shifts in soil cyanobacteria community. Net ammonification and nitrification (which dominated N-mineralization) were reduced and increased, respectively, by N fertilization, suggesting alterations in the N cycle. Soil organic C content, C:N ratios and the activity of ß-glucosidase decreased along the extant gradient in most locations. Our results suggest that semiarid soils in low-productivity sites are unable to store additional N inputs, and that are also unable to mitigate increasing C emissions when experiencing increased N deposition.


Assuntos
Poluentes Atmosféricos/análise , Carbono/análise , Ciclo do Nitrogênio/efeitos dos fármacos , Nitrogênio/análise , Microbiologia do Solo , Solo/química , Poluentes Atmosféricos/toxicidade , Sequestro de Carbono , Ecossistema , Nitrogênio/toxicidade , Espanha
4.
Astrobiology ; 10(6): 617-28, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20735252

RESUMO

Hygroscopic salts have been detected in soils in the northern latitudes of Mars, and widespread chloride-bearing evaporitic deposits have been detected in the southern highlands. The deliquescence of hygroscopic minerals such as chloride salts could provide a local and transient source of liquid water that would be available for microorganisms on the surface. This is known to occur in the Atacama Desert, where massive halite evaporites have become a habitat for photosynthetic and heterotrophic microorganisms that take advantage of the deliquescence of the salt at certain relative humidity (RH) levels. We modeled the climate conditions (RH and temperature) in a region on Mars with chloride-bearing evaporites, and modeled the evolution of the water activity (a(w)) of the deliquescence solutions of three possible chloride salts (sodium chloride, calcium chloride, and magnesium chloride) as a function of temperature. We also studied the water absorption properties of the same salts as a function of RH. Our climate model results show that the RH in the region with chloride-bearing deposits on Mars often reaches the deliquescence points of all three salts, and the temperature reaches levels above their eutectic points seasonally, in the course of a martian year. The a(w) of the deliquescence solutions increases with decreasing temperature due mainly to the precipitation of unstable phases, which removes ions from the solution. The deliquescence of sodium chloride results in transient solutions with a(w) compatible with growth of terrestrial microorganisms down to 252 K, whereas for calcium chloride and magnesium chloride it results in solutions with a(w) below the known limits for growth at all temperatures. However, taking the limits of a(w) used to define special regions on Mars, the deliquescence of calcium chloride deposits would allow for the propagation of terrestrial microorganisms at temperatures between 265 and 253 K, and for metabolic activity (no growth) at temperatures between 253 and 233 K.


Assuntos
Higroscópicos/química , Marte , Sais/química , Água/química , Absorção , Clima , Exobiologia , Meio Ambiente Extraterreno , Umidade , Pressão Parcial , Vapor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA