RESUMO
OBJECTIVES: The inhibitor of apoptosis (IAP) proteins are critical modulators of chemotherapeutic resistance in various cancers. To address the alarming emergence of chemotherapeutic resistance in pancreatic cancer, we investigated the efficacy of the turmeric derivative curcumin in reducing IAP protein and mRNA expression resulting in pancreatic cancer cell death. METHODS: The pancreatic adenocarcinoma cell line PANC-1 was used to assess curcumin's effects in pancreatic cancer. Curcumin uptake was measured by spectral analysis and fluorescence microscopy. AlamarBlue and Trypan blue exclusion assays were used to determine PANC-1 cell viability after curcumin treatment. Visualization of PANC-1 cell death was performed using Hoffman Modulation Contrast microscopy. Western blot, and polymerase chain reaction analyses were used to evaluate curcumin's effects on IAP protein and mRNA expression. RESULTS: Curcumin enters PANC-1 cells and is ubiquitously present within the cell after treatment. Furthermore, curcumin reduces cell viability and induces morphological changes characteristic of cell death. Additionally, curcumin decreases IAP protein and mRNA expression in PANC-1 cells. CONCLUSIONS: These data demonstrate that PANC-1 cells are sensitive to curcumin treatment. Futthermore, curcumin is a potential therapeutic tool for overcoming chemotherapeutic resistance mediated by IAPs. Together, this data supports a role for curcumin as part of the therapeutic approach for the treatment of pancreatic cancer.
Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/tratamento farmacológico , Curcumina/farmacologia , Proteínas Inibidoras de Apoptose/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos Fitogênicos/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Curcumina/metabolismo , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de TempoRESUMO
Exosomes are endosomal-derived nanovesicles released by normal and tumor cells which have been shown to transfer functionally active protein, lipids, mRNAs and miRNAs between cells. Varying in molecular profiles, biological roles, functional roles and protein contents, exosomes have been described as "multi-purpose carriers" playing a role in supporting the survival and growth of tumor cells. The IAP Survivin has been found to be present in tumor exosomes. However, the existence of other IAPs in tumor exosomes is still unknown. Survivin, cIAP1, cIAP2 and XIAP mRNA and protein are differently expressed in a panel of tumor cell lines: DLCL2, HeLa, MCF-7, Panc-1, and PC3. Exosomes were isolated from conditioned media collected from the cells from which RNA and protein were extracted. Our results provide evidence that like Survivin, XIAP, cIAP1 and cIAP2 proteins are found in tumor exosomes. The mRNA expression, however, is differentially expressed across the tumor cell lines. The presence of these bioactive molecules in exosomes may not only serve as warning signals, but also play a role in providing protection to the cancer cells against changes that are constantly occurring in the tumor microenvironment.
RESUMO
Pancreatic cancer is a deadly and aggressive disease. Less than 1% of diagnosed patients survive 5 years with an average survival time of only 4-8 months. The only option for metastatic pancreatic cancer is chemotherapy where only the antimetabolites gemcitabine and 5-fluorouracil are used clinically. Unfortunately, efforts to improve chemotherapy regimens by combining, 5-fluorouracil or gemcitabine with other drugs, such as cisplatin or oxaliplatin, have not increased cell killing or improved patient survival. The novel antimetabolite zebularine shows promise, inducing apoptosis and arresting cellular growth in various pancreatic cancer cell lines. However, resistance to these antimetabolites remains a problem highlighting the need to discover and develop new antimetabolites that will improve a patient's overall survival.