Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 23(1): 297, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858092

RESUMO

The current threat of multidrug resistant strains necessitates development of alternatives to antibiotics such as bacteriophages. This study describes the isolation and characterization of a novel Salmonella Typhimurium phage 'Arash' from hospital wastewater in Leuven, Belgium. Arash has a myovirus morphology with a 95 nm capsid and a 140 nm tail. The host range of Arash is restricted to its isolation host. Approximately 86% of the phage particles are adsorbed to a host cell within 10 min. Arash has latent period of 65 min and burst size of 425 PFU/cell. Arash has a dsDNA genome of 180,819 bp with GC content of 53.02% with no similarities to any characterized phages, suggesting Arash as a novel species in the novel 'Arashvirus' genus. Arash carries no apparent lysogeny-, antibiotic resistance- nor virulence-related genes. Proteome analysis revealed 116 proteins as part of the mature phage particles of which 27 could be assigned a function. Therefore, the present findings shed light on the morphological, microbiological and genomic characteristics of Arash and suggest its potential application as therapeutic and/or biocontrol agent.


Assuntos
Bacteriófagos , Fagos de Salmonella , Bacteriófagos/genética , Salmonella typhimurium/genética , Genoma Viral , Genômica , Especificidade de Hospedeiro , Fagos de Salmonella/genética
2.
J Invertebr Pathol ; 173: 107370, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32259537

RESUMO

Virus-based biocontrol technologies represent sustainable alternatives to pesticides and insecticides. Phytoplasmas are prokaryotic plant pathogens causing severe losses to crops worldwide. Novel approaches are needed since insecticides against their insect vectors and rogueing of infected plants are the only available strategies to counteract phytoplasma diseases. A new iflavirus, named EVV-1, has been described in the leafhopper phytoplasma vector Euscelidius variegatus, raising the potential to use virus-based application strategies against phytoplasma disease. Here transmission routes of EVV-1 are characterized, and localization within the host reveals the mechanism of insect tolerance to virus infection. Both vertical and horizontal transmission of EVV-1 occur and vertical transmission was more efficient. The virus is systemic and occurs in all life-stages, with the highest loads measured in ovaries and first to third instar nymphs. The basic knowledge gained here on the biology of the virus is crucial for possible future application of iflaviruses as biocontrol agents.


Assuntos
Hemípteros/microbiologia , Insetos Vetores/microbiologia , Vírus de RNA de Cadeia Positiva/fisiologia , Animais , Controle de Insetos , Controle Biológico de Vetores , Phytoplasma/fisiologia , Doenças por Fitoplasmas/microbiologia
3.
Nat Mater ; 17(2): 195-203, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251725

RESUMO

Viral infections kill millions yearly. Available antiviral drugs are virus-specific and active against a limited panel of human pathogens. There are broad-spectrum substances that prevent the first step of virus-cell interaction by mimicking heparan sulfate proteoglycans (HSPG), the highly conserved target of viral attachment ligands (VALs). The reversible binding mechanism prevents their use as a drug, because, upon dilution, the inhibition is lost. Known VALs are made of closely packed repeating units, but the aforementioned substances are able to bind only a few of them. We designed antiviral nanoparticles with long and flexible linkers mimicking HSPG, allowing for effective viral association with a binding that we simulate to be strong and multivalent to the VAL repeating units, generating forces (∼190 pN) that eventually lead to irreversible viral deformation. Virucidal assays, electron microscopy images, and molecular dynamics simulations support the proposed mechanism.  These particles show no cytotoxicity, and in vitro nanomolar irreversible activity against herpes simplex virus (HSV), human papilloma virus, respiratory syncytial virus (RSV), dengue and lenti virus. They are active ex vivo in human cervicovaginal histocultures infected by HSV-2 and in vivo in mice infected with RSV.


Assuntos
Antivirais , Materiais Biomiméticos , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 2/metabolismo , Nanopartículas , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sinciciais Respiratórios/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Proteoglicanas de Heparan Sulfato/química , Proteoglicanas de Heparan Sulfato/farmacologia , Herpes Simples/metabolismo , Herpes Simples/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/patologia
4.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29531134

RESUMO

Phytoplasmas are plant-pathogenic bacteria transmitted by hemipteran insects. The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CYp) and a laboratory vector of flavescence dorée phytoplasma (FDp). The two phytoplasmas induce different effects on this species: CYp slightly improves whereas FDp negatively affects insect fitness. To investigate the molecular bases of these different responses, transcriptome sequencing (RNA-seq) analysis of E. variegatus infected with either CYp or FDp was performed. The sequencing provided the first de novo transcriptome assembly for a phytoplasma vector and a starting point for further analyses on differentially regulated genes, mainly related to immune system and energy metabolism. Insect phenoloxidase activity, immunocompetence, and body pigmentation were measured to investigate the immune response, while respiration and movement rates were quantified to confirm the effects on energy metabolism. The activation of the insect immune response upon infection with FDp, which is not naturally transmitted by E. variegatus, confirmed that this bacterium is mostly perceived as a potential pathogen. Conversely, the acquisition of CYp, which is naturally transmitted by E. variegatus, seems to increase the insect fitness by inducing a prompt response to stress. This long-term relationship is likely to improve survival and dispersal of the infected insect, thus enhancing the opportunity of phytoplasma transmission.


Assuntos
Chrysanthemum/microbiologia , Hemípteros/imunologia , Hemípteros/microbiologia , Insetos Vetores/imunologia , Insetos Vetores/microbiologia , Phytoplasma/imunologia , Phytoplasma/patogenicidade , Animais , Interações Hospedeiro-Patógeno
5.
Arch Virol ; 162(3): 799-809, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27888410

RESUMO

The leafhopper Euscelidius variegatus is a natural vector of chrysanthemum yellows phytoplasma (CY) and an efficient vector of flavescence dorée phytoplasma (FD) under laboratory conditions. During a transcriptome sequencing (RNA-seq) project aimed at investigating the interactions between the insect and the two phytoplasmas, a 10,616-nucleotide-long contig with high sequence similarity to known picorna-like viruses was identified among the assembled insect transcripts. The discovery came totally unexpected, because insects from the laboratory colony did not show any evident symptom that could be related to the presence of a virus. The amino acid sequence, the shape and size of viral particles, and the results of phylogenetic analysis suggest that this virus, named Euscelidius variegatus virus 1 (EVV-1), can be considered a new member of a new species in the genus Iflavirus. EVV-1 was detected in all of the tested insects from the laboratory colony used for RNA-seq, both in phytoplasma-exposed and in non-exposed insects, but the viral load measured in FD-exposed samples was significantly lower than that in non-exposed insects. This result suggests the possible existence of an intriguing cross-talk among insects, endogenous bacteria, and viruses. The identification of two other E. variegatus laboratory colonies that were free of EVV-1 could represent the key to addressing some basic virological issues, e.g., viral replication and transmission mechanisms, and offer the opportunity to use infectious clones to express heterologous genes in the leafhopper and manipulate the expression of endogenous genes by promoting virus-induced gene silencing.


Assuntos
Chrysanthemum/virologia , Hemípteros/virologia , Insetos Vetores/virologia , Phytoplasma/fisiologia , Picornaviridae/genética , Doenças das Plantas/virologia , Animais , Sequência de Bases , Chrysanthemum/microbiologia , Genoma Viral , Hemípteros/microbiologia , Insetos Vetores/microbiologia , Dados de Sequência Molecular , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Prevalência
6.
Plant Biotechnol J ; 14(1): 153-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25865255

RESUMO

The rat ErbB2 (rErbB2) protein is a 185-kDa glycoprotein belonging to the epidermal growth factor-related proteins (ErbB) of receptor tyrosine kinases. Overexpression and mutations of ErbB proteins lead to several malignancies including breast, lung, pancreatic, bladder and ovary carcinomas. ErbB2 is immunogenic and is an ideal candidate for cancer immunotherapy. We investigated the possibility of expressing the extracellular (EC) domain of rErbB2 (653 amino acids, aa) in Nicotiana benthamiana plants, testing the influence of the 23 aa transmembrane (TM) sequence on protein accumulation. Synthetic variants of the rErbB2 gene portion encoding the EC domain, optimized with a human codon usage and either linked to the full TM domain (rErbB2_TM, 676 aa), to a portion of it (rErbB2-pTM, 662 aa), or deprived of it (rErbB2_noTM, 653 aa) were cloned in the pEAQ-HT expression vector as 6X His tag fusions. All rErbB2 variants (72-74.5 kDa) were transiently expressed, but the TM was detrimental for rErbB2 EC accumulation. rERbB2_noTM was the most expressed protein; it was solubilized and purified with Nickel affinity resin. When crude soluble extracts expressing rErbB2_noTM were administered to BALB/c mice, specific rErbB2 immune responses were triggered. A potent antitumour activity was induced when vaccinated mice were challenged with syngeneic transplantable ErbB2(+) mammary carcinoma cells. To our knowledge, this is the first report of expression of rErbB2 in plants and of its efficacy in inducing a protective antitumour immune response, opening interesting perspectives for further immunological testing.


Assuntos
Imunidade , Neoplasias Mamárias Animais/imunologia , Nicotiana/genética , Receptor ErbB-2/biossíntese , Receptor ErbB-2/imunologia , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Imunidade/efeitos dos fármacos , Imunização , Camundongos Endogâmicos C57BL , Plantas Geneticamente Modificadas , Domínios Proteicos , Ratos , Receptor ErbB-2/química , Receptor ErbB-2/isolamento & purificação , Solubilidade , Nicotiana/imunologia
7.
Arch Virol ; 161(9): 2549-54, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27287434

RESUMO

A potyvirus causing necrosis and leaf distortion on lettuce was found in the Lazio region of Italy. Host range analysis showed its ability to infect only Chenopodium quinoa and C. amaranticolor in addition to some lettuce cultivars. The virus could be transmitted by aphids of the species Myzus persicae. The complete 9829-nt genome was characterized. BLAST analysis of sequence of the complete encoded polyprotein showed that the most closely related virus is asparagus virus 1, with 52 % amino acid sequence identity. These results suggest that this virus should be considered a member of a new species in the genus Potyvirus.


Assuntos
Lactuca/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Chenopodium/virologia , Genoma Viral , Filogenia
8.
Mol Plant Microbe Interact ; 28(1): 30-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25494356

RESUMO

The N-terminal region of the Ourmia melon virus (OuMV) coat protein (CP) contains a short lysine/arginine-rich (KR) region. By alanine scanning mutagenesis, we showed that the KR region influences pathogenicity and virulence of OuMV without altering viral particle assembly. A mutant, called OuMV6710, with three basic residue substitutions in the KR region, was impaired in the ability to maintain the initial systemic infection in Nicotiana benthamiana and to infect both cucumber and melon plants systemically. The integrity of this protein region was also crucial for encapsidation of viral genomic RNA; in fact, certain mutations within the KR region partially compromised the RNA encapsidation efficiency of the CP. In Arabidopsis thaliana Col-0, OuMV6710 was impaired in particle accumulation; however, this phenotype was abolished in dcl2/dcl4 and dcl2/dcl3/dcl4 Arabidopsis mutants defective for antiviral silencing. Moreover, in contrast to CPwt, in situ immunolocalization experiments indicated that CP6710 accumulates efficiently in the spongy mesophyll tissue of infected N. benthamiana and A. thaliana leaves but only occasionally infects palisade tissues. These results provided strong evidence of a crucial role for OuMV CP during viral infection and highlighted the relevance of the KR region in determining tissue tropism, host range, pathogenicity, and RNA affinity, which may be all correlated with a possible CP silencing-suppression activity.


Assuntos
Proteínas do Capsídeo/metabolismo , Cucurbitaceae/virologia , Interações Hospedeiro-Patógeno , Doenças das Plantas/virologia , Vírus de Plantas/genética , Antivirais/farmacologia , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/virologia , Arginina/metabolismo , Proteínas do Capsídeo/genética , Cucurbitaceae/citologia , Especificidade de Hospedeiro , Lisina/metabolismo , Mutação , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/genética , Folhas de Planta/virologia , Vírus de Plantas/patogenicidade , Vírus de Plantas/fisiologia , Vírus de Plantas/ultraestrutura , Transporte Proteico , RNA Viral/genética , Nicotiana/citologia , Nicotiana/virologia , Tropismo , Vírion , Montagem de Vírus
9.
J Virol ; 88(12): 6970-82, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696486

RESUMO

UNLABELLED: Intrinsic immune mechanisms mediated by constitutively expressed proteins termed "restriction factors" provide frontline antiviral defense. We recently demonstrated that the DNA sensor IFI16 restricts human cytomegalovirus (HCMV) replication by downregulating viral early and late but not immediate-early mRNAs and their protein expression. We show here that at an early time point during the in vitro infection of low-passage-number human embryonic lung fibroblasts, IFI16 binds to HCMV DNA. However, during a later phase following infection, IFI16 is mislocalized to the cytoplasmic virus assembly complex (AC), where it colocalizes with viral structural proteins. Indeed, upon its binding to pUL97, IFI16 undergoes phosphorylation and relocalizes to the cytoplasm of HCMV-infected cells. ESCRT (endosomal sorting complex required for transport) machinery regulates the translocation of IFI16 into the virus AC by sorting and trafficking IFI16 into multivesicular bodies (MVB), as demonstrated by the interaction of IFI16 with two MVB markers: Vps4 and TGN46. Finally, IFI16 becomes incorporated into the newly assembled virions as demonstrated by Western blotting of purified virions and electron microscopy. Together, these results suggest that HCMV has evolved mechanisms to mislocalize and hijack IFI16, trapping it within mature virions. However, the significance of this IFI16 trapping following nuclear mislocalization remains to be established. IMPORTANCE: Intracellular viral DNA sensors and restriction factors are critical components of host defense, which alarm and sensitize immune system against intruding pathogens. We have recently demonstrated that the DNA sensor IFI16 restricts human cytomegalovirus (HCMV) replication by downregulating viral early and late but not immediate-early mRNAs and their protein expression. However, viruses are known to evolve numerous strategies to cope and counteract such restriction factors and neutralize the first line of host defense mechanisms. Our findings describe that during early stages of infection, IFI16 successfully recognizes HCMV DNA. However, in late stages HCMV mislocalizes IFI16 into the cytoplasmic viral assembly complex and finally entraps the protein into mature virions. We clarify here the mechanisms HCMV relies to overcome intracellular viral restriction, which provides new insights about the relevance of DNA sensors during HCMV infection.


Assuntos
Núcleo Celular/metabolismo , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , Citomegalovirus/fisiologia , Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Vírion/fisiologia , Liberação de Vírus , Núcleo Celular/genética , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Citoplasma/virologia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Proteínas Nucleares/genética , Fosfoproteínas/genética , Transporte Proteico , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/metabolismo , Vírion/genética , Replicação Viral
10.
BMC Microbiol ; 15: 193, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424332

RESUMO

BACKGROUND: Phytoplasmas are bacterial plant pathogens (class Mollicutes), transmitted by phloem feeding leafhoppers, planthoppers and psyllids in a persistent/propagative manner. Transmission of phytoplasmas is under the control of behavioral, environmental and geographical factors, but molecular interactions between membrane proteins of phytoplasma and vectors may also be involved. The aim of the work was to provide experimental evidence that in vivo interaction between phytoplasma antigenic membrane protein (Amp) and vector proteins has a role in the transmission process. In doing so, we also investigated the topology of the interaction at the gut epithelium and at the salivary glands, the two barriers encountered by the phytoplasma during vector colonization. METHODS: Experiments were performed on the 'Candidatus Phytoplasma asteris' chrysanthemum yellows strain (CYP), and the two leafhopper vectors Macrosteles quadripunctulatus Kirschbaum and Euscelidius variegatus Kirschbaum. To specifically address the interaction of CYP Amp at the gut epithelium barrier, insects were artificially fed with media containing either the recombinant phytoplasma protein Amp, or the antibody (A416) or both, and transmission, acquisition and inoculation efficiencies were measured. An abdominal microinjection protocol was employed to specifically address the interaction of CYP Amp at the salivary gland barrier. Phytoplasma suspension was added with Amp or A416 or both, injected into healthy E. variegatus adults and then infection and inoculation efficiencies were measured. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with A416 antibody. The organs were then either observed in confocal microscopy or subjected to DNA extraction and phytoplasma quantification by qPCR, to visualize and quantify possible differences among treatments in localization/presence/number of CYP cells. RESULTS: Artificial feeding and abdominal microinjection protocols were developed to address the two barriers separately. The in vivo interactions between Amp of 'Candidatus Phytoplasma asteris' Chrysanthemum yellows strain (CYP) and vector proteins were studied by evaluating their effects on phytoplasma transmission by Euscelidius variegatus and Macrosteles quadripunctulatus leafhoppers. An internalization assay was developed, consisting of dissected salivary glands from healthy E. variegatus exposed to phytoplasma suspension alone or together with anti-Amp antibody. To visualize possible differences among treatments in localization/presence of CYP cells, the organs were observed in confocal microscopy. Pre-feeding of E. variegatus and M. quadripunctulatus on anti-Amp antibody resulted in a significant decrease of acquisition efficiencies in both species. Inoculation efficiency of microinjected E. variegatus with CYP suspension and anti-Amp antibody was significantly reduced compared to that of the control with phytoplasma suspension only. The possibility that this was due to reduced infection efficiency or antibody-mediated inhibition of phytoplasma multiplication was ruled out. These results provided the first indirect proof of the role of Amp in the transmission process. CONCLUSION: Protocols were developed to assess the in vivo role of the phytoplasma native major antigenic membrane protein in two phases of the vector transmission process: movement through the midgut epithelium and colonization of the salivary glands. These methods will be useful also to characterize other phytoplasma-vector combinations. Results indicated for the first time that native CYP Amp is involved in vivo in specific crossing of the gut epithelium and salivary gland colonization during early phases of vector infection.


Assuntos
Antígenos de Bactérias/metabolismo , Hemípteros/microbiologia , Proteínas de Insetos/metabolismo , Insetos Vetores/microbiologia , Proteínas de Membrana/metabolismo , Phytoplasma/fisiologia , Animais , Entomologia/métodos , Trato Gastrointestinal/microbiologia , Técnicas Microbiológicas , Ligação Proteica , Mapeamento de Interação de Proteínas , Glândulas Salivares/microbiologia
11.
Plant Cell Environ ; 37(3): 557-72, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23927052

RESUMO

Rice is mostly cultivated in wetlands, where arbuscular mycorrhization (AM) is reported to decrease. The mechanisms regulating such events are largely unknown. Rice uninoculated and inoculated with Rhizophagus irregularis were grown in dry and flooded conditions, allowing also for the transfer of plants from one water regime to the other. Roots were sampled at different times, from 7 to 35 d post-inoculation (dpi). The morphological and molecular parameters (root branching, aerenchyma formation, mycorrhizal colonization, AM marker gene expression) were evaluated. Root branching was more pronounced in dry conditions, and such phenotype was enhanced by the fungus. In wetlands, the colonization level was comparable till 21 dpi, when the mycorrhization then decreased, paralleled by an increase in aerenchyma. Expression of the fungal transporters was comparable under the two conditions. The root apparatus, when shifted from one water regime to the other, rapidly adapted to the new condition, revealing a marked plasticity. The reversibility of the AM rice symbiosis was also mirrored by expression changes of plant marker genes. The results demonstrate that the water regime is the driving force that regulates AM colonization under flooding conditions, by directly influencing root architecture and anatomy, but without impacting the basic AM functionality.


Assuntos
Viabilidade Microbiana , Micorrizas/crescimento & desenvolvimento , Oryza/microbiologia , Oryza/fisiologia , Água/fisiologia , Contagem de Colônia Microbiana , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Micorrizas/genética , Oryza/metabolismo , Fenótipo , Fosfatos/metabolismo , Brotos de Planta/metabolismo , Brotos de Planta/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo
12.
J Perinat Med ; 42(1): 1-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24169308

RESUMO

AIMS: Several studies have recently reported the detection of oncogenic human papillomaviruses (HPV) in human milk of a minority of lactating mothers. These findings raised safety concerns in the context of human donor milk banking given the potential risk of HPV transmission to recipient infants. The aim of this study was to investigate whether the Holder pasteurization, a procedure currently in use in human donor milk banks for milk pasteurization, completely inactivates high-risk and low-risk HPV. METHODS: HPV pseudoviruses (PsV) were generated, spiked into cell culture medium or donor human milk and subjected to thermal inactivation. HPV PsV infectivity and morphological integrity was analyzed by cell-based assay and by electron microscopy, respectively. RESULTS: The Holder pasteurization completely inactivated the infectivity of high-risk (types 16 and 18) and low-risk (type 6) HPV both in cell culture medium and in human milk causing PsV particle disassembly. CONCLUSIONS: The results presented here indicate that the Holder pasteurization is an efficient procedure to inactivate high-risk and low-risk HPV thus preventing the potential risk of their transmission through human donor milk.


Assuntos
Alphapapillomavirus , Bancos de Leite Humano , Leite Humano/virologia , Pasteurização/métodos , Alphapapillomavirus/isolamento & purificação , Alphapapillomavirus/fisiologia , Western Blotting , Linhagem Celular , Eletroforese em Gel de Poliacrilamida , Humanos , Microscopia Eletrônica , Risco , Inativação de Vírus
13.
Virology ; 595: 110090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718447

RESUMO

Nowadays finding the new antimicrobials is necessary due to the emerging of multidrug resistant strains. The present study aimed to isolate and characterize bacteriophages against S. aureus. Strains Huma and Simurgh were the two podovirus morphology phages which isolated and then characterized. Huma and Simurgh had a genome size of 16,853 and 17,245 bp, respectively and both were Rosenblumvirus with G + C content of 29%. No lysogeny-related genes, nor virulence genes were identified in their genomes. They were lytic only against two out of four S. aureus strains. They also were able to inhibit S. aureus for 8 h in-vitro. Both showed a rapid adsorption. Huma and Simurgh had the latent period of 80 and 60 m and the burst sizes of 45 and 40 PFU/ml and also, they showed very low cell toxicity of 1.23%-1.79% on HT-29 cells, respectively. Thus, they can be considered potential candidates for biocontrol applications.


Assuntos
Genoma Viral , Fagos de Staphylococcus , Staphylococcus aureus , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/fisiologia , Fagos de Staphylococcus/isolamento & purificação , Staphylococcus aureus/virologia , Staphylococcus aureus/genética , Humanos , Composição de Bases , Podoviridae/genética , Podoviridae/isolamento & purificação , Podoviridae/classificação , Podoviridae/fisiologia , Células HT29 , Tamanho do Genoma
14.
Nanoscale ; 16(4): 1711-1723, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38087911

RESUMO

Magnetic oxygen-loaded nanodroplets (MOLNDs) are a promising class of nanomaterials dually sensitive to ultrasound and magnetic fields, which can be employed as nanovectors for drug delivery applications, particularly in the field of hypoxic tissue treatment. Previous investigations were primarily focused on the application of these hybrid systems for hyperthermia treatment, exploiting magnetic nanoparticles for heat generation and nanodroplets as carriers and ultrasound contrast agents for treatment progress monitoring. This work places its emphasis on the prospect of obtaining an oxygen delivery system that can be activated by both ultrasound and magnetic fields. To achieve this goal, Fe3O4 nanoparticles were employed to decorate and induce the magnetic vaporization of OLNDs, allowing oxygen release. We present an optimized method for preparing MOLNDs by decorating nanodroplets made of diverse fluorocarbon cores and polymeric coatings. Furthermore, we performed a series of characterizations for better understanding how magnetic decoration can influence the physicochemical properties of OLNDs. Our comprehensive analysis demonstrates the efficacy of magnetic stimulation in promoting oxygen release compared to conventional ultrasound-based methods. We emphasize the critical role of selecting the appropriate fluorocarbon core and polymeric coating to optimize the decoration process and enhance the oxygen release performance of MOLNDs.


Assuntos
Fluorocarbonos , Nanopartículas , Oxigênio , Sistemas de Liberação de Medicamentos , Ultrassonografia , Nanopartículas/química , Polímeros , Fluorocarbonos/química , Fenômenos Magnéticos
15.
Polymers (Basel) ; 16(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38674966

RESUMO

The growing prevalence of bacterial and viral infections, highlighted by the recent COVID-19 pandemic, urgently calls for new antimicrobial strategies. To this end, we have synthesized and characterized a novel fatty acid epoxy-ester plasticizer for polymers, named GDE. GDE is not only sustainable and user-friendly but also demonstrates superior plasticizing properties, while its epoxy components improve the heat stability of PVC-based matrices. A key feature of GDE is its ability to confer antimicrobial properties to surfaces. Indeed, upon contact, this material can effectively kill enveloped viruses, such as herpes simplex virus type 1 (HSV-1) and the ß-coronavirus prototype HCoV-OC43, but it is ineffective against nonenveloped viruses like human adenovirus (HAdV). Further analysis using transmission electron microscopy (TEM) on HSV-1 virions exposed to GDE showed significant structural damage, indicating that GDE can interfere with the viral envelope, potentially causing leakage. Moreover, GDE demonstrates antibacterial activity, albeit to a lesser extent, against notorious pathogens such as Staphylococcus aureus and Escherichia coli. Overall, this newly developed plasticizer shows significant potential as an antimicrobial agent suitable for use in both community and healthcare settings to curb the spread of infections caused by microorganisms contaminating physical surfaces.

16.
Fungal Genet Biol ; 52: 53-64, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23232015

RESUMO

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell.


Assuntos
Ascomicetos/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Intoxicação , Zinco/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Intoxicação por Metais Pesados , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Zinco/química
17.
mSystems ; 8(2): e0118922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36794936

RESUMO

Autographiviridae is a diverse yet distinct family of bacterial viruses marked by a strictly lytic lifestyle and a generally conserved genome organization. Here, we characterized Pseudomonas aeruginosa phage LUZ100, a distant relative of type phage T7. LUZ100 is a podovirus with a limited host range which likely uses lipopolysaccharide (LPS) as a phage receptor. Interestingly, infection dynamics of LUZ100 indicated moderate adsorption rates and low virulence, hinting at temperate characteristics. This hypothesis was supported by genomic analysis, which showed that LUZ100 shares the conventional T7-like genome organization yet carries key genes associated with a temperate lifestyle. To unravel the peculiar characteristics of LUZ100, ONT-cappable-seq transcriptomics analysis was performed. These data provided a bird's-eye view of the LUZ100 transcriptome and enabled the discovery of key regulatory elements, antisense RNA, and transcriptional unit structures. The transcriptional map of LUZ100 also allowed us to identify new RNA polymerase (RNAP)-promoter pairs that can form the basis for biotechnological parts and tools for new synthetic transcription regulation circuitry. The ONT-cappable-seq data revealed that the LUZ100 integrase and a MarR-like regulator (proposed to be involved in the lytic/lysogeny decision) are actively cotranscribed in an operon. In addition, the presence of a phage-specific promoter transcribing the phage-encoded RNA polymerase raises questions on the regulation of this polymerase and suggests that it is interwoven with the MarR-based regulation. This transcriptomics-driven characterization of LUZ100 supports recent evidence that T7-like phages should not automatically be assumed to have a strictly lytic life cycle. IMPORTANCE Bacteriophage T7, considered the "model phage" of the Autographiviridae family, is marked by a strictly lytic life cycle and conserved genome organization. Recently, novel phages within this clade have emerged which display characteristics associated with a temperate life cycle. Screening for temperate behavior is of utmost importance in fields like phage therapy, where strictly lytic phages are generally required for therapeutic applications. In this study, we applied an omics-driven approach to characterize the T7-like Pseudomonas aeruginosa phage LUZ100. These results led to the identification of actively transcribed lysogeny-associated genes in the phage genome, pointing out that temperate T7-like phages are emerging more frequent than initially thought. In short, the combination of genomics and transcriptomics allowed us to obtain a better understanding of the biology of nonmodel Autographiviridae phages, which can be used to optimize the implementation of phages and their regulatory elements in phage therapy and biotechnological applications, respectively.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Fagos de Pseudomonas/genética , Transcriptoma , Lisogenia , Bacteriófago T7/genética , RNA Polimerases Dirigidas por DNA/genética
18.
ACS Biomater Sci Eng ; 9(10): 5871-5885, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671648

RESUMO

Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.

19.
Int J Food Microbiol ; 389: 110097, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36731200

RESUMO

Foodborne Salmonella enteritidis infections place human health at risk, driven by regular outbreaks and individual cases by different contaminated food materials. This study was conducted to characterize and employ a single bacteriophage as a potential biocontrol agent. Phage Rostam was isolated, characterized and then applied as biocontrol agent against S. enteritidis in liquid whole eggs and eggshell. Rostam is a novel myovirus belonging to the Rosemountvirus genus and active against Escherichia coli and Salmonella spp. Rostam is stable in a pH range from 4 to 10, a salt concentration of 1-9 %, whereas UV radiation gradually reduces phage stability, and its 53 kb genome sequence indicates this phage does not contain known toxins or lysogeny-associated genes. Its latent period is short with a burst size of 151 PFU/cell, under standard growth conditions. Killing curves indicate that at higher multiplicities of infection (MOI), the reduction in S. enteritidis count is more pronounced. Phage Rostam (MOI 10,000) reduces S. enteritidis growth to below the detection limit at 4 °C in both liquid whole eggs and on the eggshell within 24 h. Due to its high lytic activity and stability in relevant conditions, Rostam has the potential to be an efficient biopreservative for egg and egg products.


Assuntos
Bacteriófagos , Fagos de Salmonella , Humanos , Bacteriófagos/genética , Salmonella enteritidis , Ovos , Myoviridae , Fagos de Salmonella/genética
20.
Front Microbiol ; 14: 1292461, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075896

RESUMO

An innovative spectroscopic method that allows to chemically and structurally characterize viruses directly in suspension within few minutes was developed. A library of five different plant viruses was obtained combining dielectrophoresis (DEP), performed with a device specifically designed to capture and agglomerate virus particles, and Raman spectroscopy to provide a chemical fingerprint of virions. The tested viruses, purified from infected plants, were chosen for their economic impact on horticultural crops and for their different morphological and structural features. Using the Raman-DEP device, specific profiles for each virus were successfully obtained, relying on chemical differences occurring even with genetically similar viruses belonging to the same taxonomic species and morphologically indiscernible by transmission electron microscopy (TEM). Moreover, we investigated the potentiality of Raman-DEP to follow dynamic changes occurring upon heat treatment of tobacco mosaic virus (TMV) particles. Raman peak deviations linked to TMV coat protein conformation were observed upon treatment at temperatures equal or higher than 85°C, substantiating the rod-to-spherical shape transitions observed by TEM and the concomitant drastic loss of infectivity following plant inoculation. Overall, the Raman-DEP method can be useful for the characterization of virus (nano)particles, setting the basis to create a database suitable for the study of viruses or virus derived-nanoparticles relevant for the agricultural, medical, or biotechnological fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA