Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(2): e23418, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38226870

RESUMO

miRNAs are short single-stranded noncoding RNAs that participate as epigenetic regulators in inflammatory bowel disease. Most miRNAs detectable in serum are concentrated in exosomes, with relevant cargo for immunobiological processes. We set to evaluate the exosomes miRNAs content in the serum of patients with Crohn's disease (CD) and run a prospective observational study on CD patients on biological monotherapy and healthy controls. miRNA cargo was evaluated in peripheral blood-derived exosomes. Serum autophagy and inflammatory substrates were measured. Patients were followed for 6 months. Patients (n = 28) showed an overexpression of miR-376a-3p and a downregulation of miR-20a-5p compared to controls (n = 10), without significant differences between patients according to biologics. Serum autophagy substrates ATG4C (r = .57; p = .001) and ACRV1C (r = .66; p = .001) inversely correlated with miR-376a-3p expression, whereas IGF1R correlated with miR-20a-5p expression (r = .42; p = .02). Th1-related cytokines correlated with miR-376a-3p expression, whereas the Th17-associated cytokines inversely correlated with miR-20a-5p expression. Smoking (ß = -2.301 CI 95% -3.790/-0.811, p = .004) remained as independent factor related to the overexpression of miR-376a-3p, whereas diagnosis before 16 years of age (ß = 2.044 CI 95% 0.934/3.154, p = .001) and a younger age of patients (ß = -.720 CI 95% -0.108/-0.035, p = .001) were related to decreased miR-20a-5p expression. Seven patients (25%) had a flare in the 6-month follow-up. Patients with overexpression of miR-376a-3p at the baseline showed an increased risk of flare during this period (OR 0.475 [0.237-0.950], p = .035). Finally, a comparative miRNA signature between biologic monotherapies was also explored. Targeting miR-376a-3p and miR-20a-5p epigenetic regulators may yield homeostatic effects on relevant biological processes related to disease progression in CD patients.


Assuntos
Doença de Crohn , Exossomos , MicroRNAs , Pequeno RNA não Traduzido , Humanos , Doença de Crohn/genética , MicroRNAs/genética , Fumar , Autofagia/genética , Citocinas
2.
J Pathol ; 263(4-5): 482-495, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38872438

RESUMO

Liver fibrosis is the consequence of chronic liver injury in the presence of an inflammatory component. Although the main executors of this activation are known, the mechanisms that lead to the inflammatory process that mediates the production of pro-fibrotic factors are not well characterized. Epidermal growth factor receptor (EGFR) signaling in hepatocytes is essential for the regenerative processes of the liver; however, its potential role in regulating the fibrotic niche is not yet clear. Our group generated a mouse model that expresses an inactive truncated form of the EGFR specifically in hepatocytes (ΔEGFR mice). Here, we have analyzed the response of WT and ΔEGFR mice to chronic treatment with carbon tetrachloride (CCl4), which induces a pro-inflammatory and fibrotic process in the liver. The results indicated that the hallmarks of liver fibrosis were attenuated in CCl4-treated ΔEGFR mice when compared with CCl4-treated WT mice, coinciding with a faster resolution of the fibrotic process and ameliorated damage. The absence of EGFR activity in hepatocytes induced changes in the pattern of immune cells in the liver, with a notable increase in the population of M2 macrophages, more related to fibrosis resolution, as well as in the population of lymphocytes related to eradication of the damage. Transcriptome analysis of hepatocytes, and secretome studies of extracellular media from in vitro experiments, allowed us to elucidate the specific molecular mechanisms regulated by EGFR that mediate hepatocyte production of both pro-fibrotic and pro-inflammatory mediators; these have consequences for the deposition of extracellular matrix proteins, as well as for the immune microenvironment. Overall, our study uncovered novel mechanistic insights regarding EGFR kinase-dependent actions in hepatocytes that reveal its key role in chronic liver damage. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Tetracloreto de Carbono , Receptores ErbB , Hepatócitos , Transdução de Sinais , Animais , Receptores ErbB/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Fígado/patologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Camundongos , Camundongos Endogâmicos C57BL , Masculino , Comunicação Celular , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos Transgênicos
3.
Pharmacol Res ; 187: 106578, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435271

RESUMO

BACKGROUND AND AIMS: Metformin, the most prescribed drug for the treatment of type 2 diabetes mellitus, has been recently reported to promote weight loss by upregulating the anorectic cytokine growth differentiation factor 15 (GDF15). Since the antidiabetic effects of metformin are mostly mediated by the activation of AMPK, a key metabolic sensor in energy homeostasis, we examined whether the activation of this kinase by metformin was dependent on GDF15. METHODS: Cultured hepatocytes and myotubes, and wild-type and Gdf15-/- mice were utilized in a series of studies to investigate the involvement of GDF15 in the activation of AMPK by metformin. RESULTS: A low dose of metformin increased GDF15 levels without significantly reducing body weight or food intake, but it ameliorated glucose intolerance and activated AMPK in the liver and skeletal muscle of wild-type mice but not Gdf15-/- mice fed a high-fat diet. Cultured hepatocytes and myotubes treated with metformin showed AMPK-mediated increases in GDF15 levels independently of its central receptor GFRAL, while Gdf15 knockdown blunted the effect of metformin on AMPK activation, suggesting that AMPK is required for the metformin-mediated increase in GDF15, which in turn is needed to sustain the full activation of this kinase independently of the CNS. CONCLUSION: Overall, these findings uncover a novel mechanism through which GDF15 upregulation by metformin is involved in achieving and sustaining full AMPK activation by this drug independently of the CNS.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Fator 15 de Diferenciação de Crescimento , Hipoglicemiantes , Metformina , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Fator 15 de Diferenciação de Crescimento/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Retroalimentação Fisiológica
4.
J Pathol ; 258(3): 312-324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36148647

RESUMO

Despite the well-known hepatoprotective role of the epidermal growth factor receptor (EGFR) pathway upon acute damage, its specific actions during chronic liver disease, particularly cholestatic injury, remain ambiguous and unresolved. Here, we analyzed the consequences of inactivating EGFR signaling in the liver on the regenerative response following cholestatic injury. For that, transgenic mice overexpressing a dominant negative mutant human EGFR lacking tyrosine kinase activity (ΔEGFR) in albumin-positive cells were submitted to liver damage induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), an experimental model resembling human primary sclerosing cholangitis. Our results show an early activation of EGFR after 1-2 days of a DDC-supplemented diet, followed by a signaling switch-off. Furthermore, ΔEGFR mice showed less liver damage and a more efficient regeneration following DDC injury. Analysis of the mechanisms driving this effect revealed an enhanced activation of mitogenic/survival signals, AKT and ERK1/2-MAPKs, and changes in cell turnover consistent with a quicker resolution of damage in response to DDC. These changes were concomitant with profound differences in the profile of intrahepatic immune cells, consisting of a shift in the M1/M2 balance towards M2 polarity, and the Cd4/Cd8 ratio in favor of Cd4 lymphocytes, overall supporting an immune cell switch into a pro-restorative phenotype. Interestingly, ΔEGFR livers also displayed an amplified ductular reaction, with increased expression of EPCAM and an increased number of CK19-positive ductular structures in portal areas, demonstrating an overexpansion of ductular progenitor cells. In summary, our work supports the notion that hepatocyte-specific EGFR activity acts as a key player in the crosstalk between parenchymal and non-parenchymal hepatic cells, promoting the pro-inflammatory response activated during cholestatic injury and therefore contributing to the pathogenesis of cholestatic liver disease. © 2022 The Pathological Society of Great Britain and Ireland.


Assuntos
Hepatopatias , Regeneração Hepática , Albuminas/metabolismo , Albuminas/farmacologia , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Molécula de Adesão da Célula Epitelial/metabolismo , Molécula de Adesão da Célula Epitelial/farmacologia , Receptores ErbB/metabolismo , Hepatócitos/patologia , Humanos , Fígado/patologia , Hepatopatias/patologia , Regeneração Hepática/fisiologia , Camundongos , Camundongos Transgênicos , Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Diabetologia ; 65(3): 490-505, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34932133

RESUMO

AIMS/HYPOTHESIS: Second-generation antipsychotic (SGA) drugs have been associated with the development of type 2 diabetes and the metabolic syndrome in patients with schizophrenia. In this study, we aimed to investigate the effects of two different SGA drugs, olanzapine and aripiprazole, on metabolic state and islet function and plasticity. METHODS: We analysed the functional adaptation of beta cells in 12-week-old B6;129 female mice fed an olanzapine- or aripiprazole-supplemented diet (5.5-6.0 mg kg-1 day-1) for 6 months. Glucose and insulin tolerance tests, in vivo glucose-stimulated insulin secretion and indirect calorimetry were performed at the end of the study. The effects of SGAs on beta cell plasticity and islet serotonin levels were assessed by transcriptomic analysis and immunofluorescence. Insulin secretion was assessed by static incubations and Ca2+ fluxes by imaging techniques. RESULTS: Treatment of female mice with olanzapine or aripiprazole for 6 months induced weight gain (p<0.01 and p<0.05, respectively), glucose intolerance (p<0.01) and impaired insulin secretion (p<0.05) vs mice fed a control chow diet. Aripiprazole, but not olanzapine, induced serotonin production in beta cells vs controls, likely by increasing tryptophan hydroxylase 1 (TPH1) expression, and inhibited Ca2+ flux. Of note, aripiprazole increased beta cell size (p<0.05) and mass (p<0.01) vs mice fed a control chow diet, along with activation of mechanistic target of rapamycin complex 1 (mTORC1)/S6 signalling, without preventing beta cell dysfunction. CONCLUSIONS/INTERPRETATION: Both SGAs induced weight gain and beta cell dysfunction, leading to glucose intolerance; however, aripiprazole had a more potent effect in terms of metabolic alterations, which was likely a result of its ability to modulate the serotonergic system. The deleterious metabolic effects of SGAs on islet function should be considered while treating patients as these drugs may increase the risk for development of the metabolic syndrome and diabetes.


Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Animais , Antipsicóticos/efeitos adversos , Aripiprazol/metabolismo , Aripiprazol/farmacologia , Diabetes Mellitus Tipo 2/metabolismo , Feminino , Humanos , Ilhotas Pancreáticas/metabolismo , Camundongos , Olanzapina/efeitos adversos , Olanzapina/metabolismo
6.
Pharmacol Rev ; 70(2): 348-383, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507103

RESUMO

Systems medicine has a mechanism-based rather than a symptom- or organ-based approach to disease and identifies therapeutic targets in a nonhypothesis-driven manner. In this work, we apply this to transcription factor nuclear factor (erythroid-derived 2)-like 2 (NRF2) by cross-validating its position in a protein-protein interaction network (the NRF2 interactome) functionally linked to cytoprotection in low-grade stress, chronic inflammation, metabolic alterations, and reactive oxygen species formation. Multiscale network analysis of these molecular profiles suggests alterations of NRF2 expression and activity as a common mechanism in a subnetwork of diseases (the NRF2 diseasome). This network joins apparently heterogeneous phenotypes such as autoimmune, respiratory, digestive, cardiovascular, metabolic, and neurodegenerative diseases, along with cancer. Importantly, this approach matches and confirms in silico several applications for NRF2-modulating drugs validated in vivo at different phases of clinical development. Pharmacologically, their profile is as diverse as electrophilic dimethyl fumarate, synthetic triterpenoids like bardoxolone methyl and sulforaphane, protein-protein or DNA-protein interaction inhibitors, and even registered drugs such as metformin and statins, which activate NRF2 and may be repurposed for indications within the NRF2 cluster of disease phenotypes. Thus, NRF2 represents one of the first targets fully embraced by classic and systems medicine approaches to facilitate both drug development and drug repurposing by focusing on a set of disease phenotypes that appear to be mechanistically linked. The resulting NRF2 drugome may therefore rapidly advance several surprising clinical options for this subset of chronic diseases.


Assuntos
Doença Crônica/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Fator 2 Relacionado a NF-E2/metabolismo , Análise de Sistemas , Animais , Anti-Inflamatórios/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos , Humanos , Fator 2 Relacionado a NF-E2/genética
7.
J Pharmacol Exp Ther ; 374(3): 452-461, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32554435

RESUMO

Schizophrenia is a mental disease that results in decreased life expectancy and well-being by promoting obesity and sedentary lifestyles. Schizophrenia is treated by antipsychotic drugs. Although the second-generation antipsychotics (SGA), Olanzapine and Aripiprazole, are more effective in treating schizophrenia, they display a higher risk of metabolic side effects, mostly by development of diabetes and insulin resistance, weight gain, and dyslipidemia. Endoplasmic reticulum (ER) stress is induced when ER homeostasis of lipid biosynthesis and protein folding is impaired. This leads to the activation of the unfolded protein response (UPR), a signaling cascade that aims to restore ER homeostasis or initiate cell death. Chronic conditions of ER stress in the liver are associated with diabetes and perturbed lipid metabolism. These metabolic dysfunctions resemble the pharmacological side effects of SGAs. We therefore investigated whether SGAs promote the UPR in human and mouse hepatocytes. We observed full-fledged activation of ER stress by Aripiprazole not by Olanzapine. This occurred at low micromolar concentrations and to variable intensities in different cell types, such as hepatocellular carcinoma, melanoma, and glioblastoma. Mechanistically, Aripiprazole caused depletion of ER calcium, leading to activation of inositol-requiring enzyme 1 (IRE1)and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK), two major transducers of the UPR. Cells underwent apoptosis with Aripiprazole treatment, which coincided with UPR induction, and this effect was reduced by adding glutathione without affecting UPR itself. Deletion of IRE1 from HepG2, a human liver cancer cell line, protected cells from Aripiprazole toxicity. Our study reveals for the first time a cytotoxic effect of Aripiprazole that involves the induction of ER stress. SIGNIFICANCE STATEMENT: The antischizophrenic drug Aripiprazole exerts cytotoxic properties at high concentrations. This study shows that this cytotoxicity is associated with the induction of endoplasmic reticulum (ER) stress and IRE1 activation, mechanisms involved in diet-induced obesity. Aripiprazole induced ER stress and calcium mobilization from the ER in human and mouse hepatocytes. Our study highlights a new mechanism of Aripiprazole that is not related to its effect on dopamine signaling.

8.
J Lipid Res ; 59(12): 2308-2320, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352954

RESUMO

Tyrosine hydroxylase (TH) catalyzes the first step in catecholamines synthesis. We studied the impact of reduced TH in brown adipose tissue (BAT) activation. In adult heterozygous (Th+/- ) mice, dopamine and noradrenaline (NA) content in BAT decreased after cold exposure. This reduced catecholaminergic response did not impair cold adaptation, because these mice induced uncoupling protein 1 (UCP-1) and maintained BAT temperature to a similar extent than controls (Th+/+ ). Possible compensatory mechanisms implicated were studied. Prdm16 and Fgf21 expression, key genes in BAT activation, were elevated in Th+/- mice at thermoneutrality from day 18.5 of embryonic life. Likewise, plasma FGF21 and liver Fgf21 mRNA were increased. Analysis of endoplasmic reticulum (ER) stress, a process that triggers elevations in FGF21, showed higher phospho-IRE1, phospho-JNK, and CHOP in BAT of Th+/- mice at thermoneutrality. Also, increased lipolysis in BAT of cold-exposure Th+/- mice was demonstrated by increased phosphorylation of hormone-sensitive lipase (HSL), as well as diacylglycerol (DAG) and FFA content. Overall, these results indicate that the mild effects of Th haploinsufficiency on BAT function are likely due to compensatory mechanisms involving elevations in Fgf21 and Prdm16 and through adaptive changes in the lipid profile.


Assuntos
Tecido Adiposo Marrom/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Western Blotting , Calorimetria Indireta , Catecolaminas/sangue , Temperatura Baixa , Proteínas de Ligação a DNA/metabolismo , Dopamina/metabolismo , Ácidos Graxos não Esterificados/sangue , Imuno-Histoquímica , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Norepinefrina/sangue , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Triglicerídeos/sangue
9.
Hepatology ; 65(3): 950-968, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27880981

RESUMO

Because nonalcoholic steatohepatitis (NASH) is associated with impaired liver regeneration, we investigated the effects of G49, a dual glucagon-like peptide-1/glucagon receptor agonist, on NASH and hepatic regeneration. C57Bl/6 mice fed chow or a methionine and choline-deficient (MCD) diet for 1 week were divided into 4 groups: control (chow diet), MCD diet, chow diet plus G49, and M+G49 (MCD diet plus G49). Mice fed a high-fat diet (HFD) for 10 weeks were divided into groups: HFD and H+G49 (HFD plus G49). Following 2 (MCD groups) or 3 (HFD groups) weeks of treatment with G49, partial hepatectomy (PH) was performed, and all mice were maintained on the same treatment schedule for 2 additional weeks. Analysis of liver function, hepatic regeneration, and comprehensive genomic and metabolic profiling were conducted. NASH was ameliorated in the M+G49 group, manifested by reduced inflammation, steatosis, oxidative stress, and apoptosis and increased mitochondrial biogenesis. G49 treatment was also associated with replenishment of intrahepatic glucose due to enhanced gluconeogenesis and reduced glucose use through the pentose phosphate cycle and oxidative metabolism. Following PH, G49 treatment increased survival, restored the cytokine-mediated priming phase, and enhanced the proliferative capacity and hepatic regeneration ratio in mice on the MCD diet. NASH markers remained decreased in M+G49 mice after PH, and glucose use was shifted to the pentose phosphate cycle and oxidative metabolism. G49 administered immediately after PH was also effective at alleviating the pathological changes induced by the MCD diet. Benefits in terms of liver regeneration were also found in mice fed HFD and treated with G49. CONCLUSION: Dual-acting glucagon-like peptide-1/glucagon receptor agonists such as G49 represent a novel therapeutic approach for patients with NASH and particularly those requiring PH. (Hepatology 2017;65:950-968).


Assuntos
Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Regeneração Hepática/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Receptores de Glucagon/antagonistas & inibidores , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Humanos , Imuno-Histoquímica , Peroxidação de Lipídeos , Regeneração Hepática/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/patologia , Estresse Oxidativo , Distribuição Aleatória , Receptores de Glucagon/administração & dosagem , Resultado do Tratamento
10.
Biochim Biophys Acta ; 1862(9): 1710-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27321932

RESUMO

Cyclooxygenase-2 (COX-2) is involved in different liver diseases but little is known about the significance of COX-2 in the development and progression of non-alcoholic steatohepatitis (NASH). This study was designed to elucidate the role of COX-2 expression in hepatocytes in the pathogenesis of steatohepatitis and hepatic fibrosis. In the present work, hepatocyte-specific COX-2 transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either fed methionine-and-choline deficient (MCD) diet to establish an experimental non-alcoholic steatohepatitis (NASH) model or injected with carbon tetrachloride (CCl4) to induce liver fibrosis. In our animal model, hCOX-2-Tg mice fed MCD diet showed lower grades of steatosis, ballooning and inflammation than Wt mice, in part by reduced recruitment and infiltration of hepatic macrophages, with a corresponding decrease in serum levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice showed a significant attenuation of the MCD diet-induced increase in oxidative stress and hepatic apoptosis observed in Wt mice. Even more, hCOX-2-Tg mice treated with CCl4 had significantly lower stages of fibrosis and less hepatic content of collagen, hydroxyproline and pro-fibrogenic markers than Wt controls. Collectively, our data indicates that constitutive hepatocyte COX-2 expression ameliorates NASH and liver fibrosis development in mice by reducing inflammation, oxidative stress and apoptosis and by modulating activation of hepatic stellate cells, respectively, suggesting a possible protective role for COX-2 induction in NASH/NAFLD progression.


Assuntos
Ciclo-Oxigenase 2/genética , Hepatócitos/enzimologia , Cirrose Hepática/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Animais , Apoptose , Células Cultivadas , Deficiência de Colina/complicações , Ciclo-Oxigenase 2/metabolismo , Dinoprostona/farmacologia , Modelos Animais de Doenças , Expressão Gênica , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/enzimologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Cirrose Hepática/enzimologia , Cirrose Hepática/etiologia , Masculino , Metionina/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Estresse Oxidativo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
11.
Biochim Biophys Acta ; 1861(12 Pt A): 1929-1941, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27686967

RESUMO

New onset diabetes after transplantation (NODAT) is a metabolic disorder that affects 40% of patients on immunosuppressive agent (IA) treatment, such as rapamycin (also known as sirolimus). IAs negatively modulate insulin action in peripheral tissues including skeletal muscle, liver and white fat. However, the effects of IAs on insulin sensitivity and thermogenesis in brown adipose tissue (BAT) have not been investigated. We have analyzed the impact of rapamycin on insulin signaling, thermogenic gene-expression and mitochondrial respiration in BAT. Treatment of brown adipocytes with rapamycin for 16h significantly decreased insulin receptor substrate 1 (IRS1) protein expression and insulin-mediated protein kinase B (Akt) phosphorylation. Consequently, both insulin-induced glucose transporter 4 (GLUT4) translocation to the plasma membrane and glucose uptake were decreased. Early activation of the N-terminal Janus activated kinase (JNK) was also observed, thereby increasing IRS1 Ser 307 phosphorylation. These effects of rapamycin on insulin signaling in brown adipocytes were partly prevented by a JNK inhibitor. In vivo treatment of rats with rapamycin for three weeks abolished insulin-mediated Akt phosphorylation in BAT. Rapamycin also inhibited norepinephrine (NE)-induced lipolysis, the expression of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) and uncoupling protein (UCP)-1 in brown adipocytes. Importantly, basal mitochondrial respiration, proton leak and maximal respiratory capacity were significantly decreased in brown adipocytes treated with rapamycin. In conclusion, we demonstrate, for the first time the important role of brown adipocytes as target cells of rapamycin, suggesting that insulin resistance in BAT might play a major role in NODAT development.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Glucose/metabolismo , Insulina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Proteína Desacopladora 1/metabolismo , Adipócitos Marrons/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Animais , Respiração Celular/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Termogênese/efeitos dos fármacos
12.
Am J Physiol Renal Physiol ; 312(4): F748-F759, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440778

RESUMO

Diabetic nephropathy (DN) remains an unmet medical challenge as its prevalence is projected to continue to increase and specific medicines for treatment remain undeveloped. Activation of the immune system, in particular T-cells, is emerging as a possible mechanism underlying DN disease progression in humans and animal models. We hypothesized that inhibition of T-cell activation will ameliorate DN. Interaction of B7-1 (CD80) on the surface of antigen presenting cells with its binding partners, CTLA4 (CD152) and CD28 on T-cells, is essential for T-cell activation. In this study we used the soluble CTLA4-Fc fusion protein Abatacept to block cell surface B7-1, preventing the cellular interaction and inhibiting T-cell activation. When Abatacept was dosed in an animal model of diabetes-induced albuminuria, it reduced albuminuria in both prevention and intervention modes. The number of T-cells infiltrating the kidneys of DN animals correlated with the degree of albuminuria, and treatment with Abatacept reduced the number of renal T-cells. As B7-1 induction has been recently proposed to underlie podocyte damage in DN, Abatacept could be efficacious in DN by protecting podocytes. However, this does not appear to be the case as B7-1 was not expressed in 1) kidneys of DN animals; 2) stimulated human podocytes in culture; or 3) glomeruli of DN patients. We conclude that Abatacept ameliorates DN by blocking systemic T-cell activation and not by interacting with podocytes.


Assuntos
Abatacepte/farmacologia , Albuminúria/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Imunossupressores/farmacologia , Rim/efeitos dos fármacos , Ativação Linfocitária/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Albuminúria/imunologia , Albuminúria/metabolismo , Albuminúria/patologia , Animais , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Linhagem Celular , Colágeno Tipo IV/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/imunologia , Nefropatias Diabéticas/imunologia , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Dieta Hiperlipídica , Humanos , Rim/imunologia , Rim/metabolismo , Rim/patologia , Camundongos Endogâmicos C57BL , Podócitos/efeitos dos fármacos , Podócitos/imunologia , Podócitos/metabolismo , Estreptozocina , Linfócitos T/imunologia , Fatores de Tempo
13.
Hepatology ; 63(2): 604-19, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26313466

RESUMO

UNLABELLED: Different data support a role for the epidermal growth factor receptor (EGFR) pathway during liver regeneration and hepatocarcinogenesis. However, important issues, such as the precise mechanisms mediating its actions and the unique versus redundant functions, have not been fully defined. Here, we present a novel transgenic mouse model expressing a hepatocyte-specific truncated form of human EGFR, which acts as negative dominant mutant (ΔEGFR) and allows definition of its tyrosine kinase-dependent functions. Results indicate a critical role for EGFR catalytic activity during the early stages of liver regeneration. Thus, after two-thirds partial hepatectomy, ΔEGFR livers displayed lower and delayed proliferation and lower activation of proliferative signals, which correlated with overactivation of the transforming growth factor-ß pathway. Altered regenerative response was associated with amplification of cytostatic effects of transforming growth factor-ß through induction of cell cycle negative regulators. Interestingly, lipid synthesis was severely inhibited in ΔEGFR livers after partial hepatectomy, revealing a new function for EGFR kinase activity as a lipid metabolism regulator in regenerating hepatocytes. In spite of these profound alterations, ΔEGFR livers were able to recover liver mass by overactivating compensatory signals, such as c-Met. Our results also indicate that EGFR catalytic activity is critical in the early preneoplastic stages of the liver because ΔEGFR mice showed a delay in the appearance of diethyl-nitrosamine-induced tumors, which correlated with decreased proliferation and delay in the diethyl-nitrosamine-induced inflammatory process. CONCLUSION: These studies demonstrate that EGFR catalytic activity is critical during the initial phases of both liver regeneration and carcinogenesis and provide key mechanistic insights into how this kinase acts to regulate liver pathophysiology. (Hepatology 2016;63:604-619).


Assuntos
Carcinogênese , Receptores ErbB/fisiologia , Neoplasias Hepáticas/etiologia , Regeneração Hepática/fisiologia , Animais , Catálise , Humanos , Masculino , Camundongos
14.
Exp Eye Res ; 164: 46-54, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28734673

RESUMO

Diabetic retinopathy (DR) is usually considered a microvascular disease. However, involvement of the neuroretina in the early stages of DR has recently gained major credit. Inflammatory processes, leading to glial activation and neuronal apoptosis, develop early in the retina of diabetic subjects. Pericytes constitute a link between the vascular and the neural retina, play a central role in blood-retinal barrier maintenance, and may influence neuroinflammation. Somatostatin (SST) is a potent neuroprotective factor, which is down-regulated during early DR. In this paper, we have investigated the effects of the inflammatory signals triggered by the activation of microglia on inflammation and apoptosis/survival pathways in pericytes. Microglia cells (Bv-2) were stimulated with lipopolysaccharide (LPS) and/or SST. Human retinal pericytes (HRP) were exposed to conditioned media (CM) collected from Bv-2 cells in physiological conditions and in the settings described above. A panel of inflammation, apoptosis and survival mediators was analyzed. HRP treated with LPS-CM showed a significant increase of pro-inflammatory (iNos and TNFα) and pro-apoptotic mediators (FasL, active caspase-8, tBid and Bax), and a concomitant decrease in pro-survival factors (BclxL and pAkt). SST added to LPS was able to counteract these effects in all conditions. In conclusion, SST is able to modulate apoptosis/survival pathways in HRP during microglia-mediated inflammation. These results demonstrate a crosstalk between microglia and retinal pericytes, evidencing a possible defensive role of microglia in the early phases of DR.


Assuntos
Inflamação/tratamento farmacológico , Microglia/fisiologia , Pericitos/efeitos dos fármacos , Retina/efeitos dos fármacos , Somatostatina/farmacologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 8/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Retinopatia Diabética/tratamento farmacológico , Glucose/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/efeitos dos fármacos , Pericitos/metabolismo , Pericitos/fisiologia , Retina/citologia , Transdução de Sinais/efeitos dos fármacos
15.
J Biol Chem ; 290(18): 11663-77, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25792746

RESUMO

Chronic low grade inflammation in adipose tissue during obesity is associated with an impairment of the insulin signaling cascade. In this study, we have evaluated the impact of palmitate or oleate overload of macrophage/Kupffer cells in triggering stress-mediated signaling pathways, in lipoapoptosis, and in the cross-talk with insulin signaling in hepatocytes. RAW 264.7 macrophages or Kupffer cells were stimulated with oleate or palmitate, and levels of M1/M2 polarization markers and the lipidomic profile of eicosanoids were analyzed. Whereas proinflammatory cytokines and total eicosanoids were elevated in macrophages/Kupffer cells stimulated with palmitate, enhanced arginase 1 and lower leukotriene B4 (LTB4) levels were detected in macrophages stimulated with oleate. When hepatocytes were pretreated with conditioned medium (CM) from RAW 264.7 or Kupffer cells loaded with palmitate (CM-P), phosphorylation of stress kinases and endoplasmic reticulum stress signaling was increased, insulin signaling was impaired, and lipoapoptosis was detected. Conversely, enhanced insulin receptor-mediated signaling and reduced levels of the phosphatases protein tyrosine phosphatase 1B (PTP1B) and phosphatase and tensin homolog (PTEN) were found in hepatocytes treated with CM from macrophages stimulated with oleate (CM-O). Supplementation of CM-O with LTB4 suppressed insulin sensitization and increased PTP1B and PTEN. Furthermore, LTB4 decreased insulin receptor tyrosine phosphorylation in hepatocytes, activated the NFκB pathway, and up-regulated PTP1B and PTEN, these effects being mediated by LTB4 receptor BTL1. In conclusion, oleate and palmitate elicit an opposite cross-talk between macrophages/Kupffer cells and hepatocytes. Whereas CM-P interferes at the early steps of insulin signaling, CM-O increases insulin sensitization, possibly by reducing LTB4.


Assuntos
Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Insulina/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Ácido Oleico/farmacologia , Palmitatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Meios de Cultura Livres de Soro , Citocinas/metabolismo , Eicosanoides/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Leucotrieno B4/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Proteínas Quinases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo
16.
Biochim Biophys Acta ; 1853(12): 3224-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26384875

RESUMO

Insulin signaling to the glomerular podocyte is important for normal kidney function and is implicated in the pathogenesis of diabetic nephropathy (DN). This study determined the role of the insulin receptor substrate 2 (IRS2) in this system. Conditionally immortalized murine podocytes were generated from wild-type (WT) and insulin receptor substrate 2-deficient mice (Irs2(-/-)). Insulin signaling, glucose transport, cellular motility and cytoskeleton rearrangement were then analyzed. Within the glomerulus IRS2 is enriched in the podocyte and is preferentially phosphorylated by insulin in comparison to IRS1. Irs2(-/-) podocytes are significantly insulin resistant in respect to AKT signaling, insulin-stimulated GLUT4-mediated glucose uptake, filamentous actin (F-actin) cytoskeleton remodeling and cell motility. Mechanistically, we discovered that Irs2 deficiency causes insulin resistance through up-regulation of the phosphatase and tensin homolog (PTEN). Importantly, suppressing PTEN in Irs2(-/-) podocytes rescued insulin sensitivity. In conclusion, this study has identified for the first time IRS2 as a critical molecule for sensitizing the podocyte to insulin actions through its ability to modulate PTEN expression. This finding reveals two potential molecular targets in the podocyte for modulating insulin sensitivity and treating DN.


Assuntos
Proteínas Substratos do Receptor de Insulina/fisiologia , Resistência à Insulina , PTEN Fosfo-Hidrolase/fisiologia , Podócitos/citologia , Animais , Linhagem Celular Transformada , Insulina/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Glomérulos Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/genética , Fosforilação , Podócitos/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais
17.
Mol Vis ; 22: 1522-1531, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28050125

RESUMO

PURPOSE: Many cellular and molecular studies in experimental animals and early retinal function tests in patients with diabetic retinopathy (DR) have shown that retinal neurodegeneration is an early event in the pathogenesis of the disease. Somatostatin (SST) is one of the most important neuroprotective factors synthesized by the retina: SST levels are decreased in parallel to retinal neurodegeneration in early stages of DR. In this study, we characterized the induction of apoptosis (programmed cell death) in a 661W photoreceptor-like cell line cultured under high glucose (HG) conditions and the effect of SST. METHODS: A 661W photoreceptor-like cell line and retinal explants from 10-week-old male C57BL/6 mice were cultured under HG conditions and treated with SST. RESULTS: Hyperglycemia significantly reduced the cellular viability by increasing the percentage of apoptotic cells, and this effect was ameliorated by SST (p˂0.05). Activation of caspase-8 by hyperglycemia was found in the 661W cells and retinal explants and decreased in the presence of SST (p˂0.05). Moreover, we detected activation of calpain-2 associated with hyperglycemia-induced cell death, as well as increased protein tyrosine phosphatase 1B (PTP1B) protein levels; both had a pattern of cleavage that was absent in the presence of SST (p˂0.05). Treatment of the 661W cells and retinal explants with SST for 24 h increased the phosphorylation of type 1 insulin-like growth factor receptor (IGF-IR; tyrosine 1165/1166) and protein kinase B (Akt; serine 473), suggesting this survival signaling is activated in the neuroretina by SST (p˂0.05). CONCLUSIONS: This study has provided new mechanistic insights first into the involvement of calpain-2 and PTP1B in the loss of cell survival and increased caspase-8-dependent apoptosis induced by hyperglycemia in photoreceptor cells and second, on the protective effect of SST against apoptosis by the enhancement of IGF-IR-mediated Akt phosphorylation.


Assuntos
Apoptose/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Glucose/toxicidade , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Somatostatina/farmacologia , Animais , Calpaína/metabolismo , Caspase 8/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Hiperglicemia/patologia , Masculino , Camundongos Endogâmicos C57BL , Fosforilação/efeitos dos fármacos , Células Fotorreceptoras/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo
18.
Toxicol Appl Pharmacol ; 313: 57-67, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27751938

RESUMO

A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25µM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1ß (IL1ß) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Triterpenos/farmacologia , Animais , Caspase 1/metabolismo , Linhagem Celular , Indução Enzimática , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , RNA Mensageiro/genética
19.
J Biol Chem ; 289(42): 29406-19, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25204659

RESUMO

Many drugs are associated with the development of glucose intolerance or deterioration in glycemic control in patients with pre-existing diabetes. We have evaluated the cross-talk between signaling pathways activated by acetaminophen (APAP) and insulin signaling in hepatocytes with or without expression of the protein-tyrosine phosphatase 1B (PTP1B) and in wild-type and PTP1B-deficient mice chronically treated with APAP. Human primary hepatocytes, Huh7 hepatoma cells with silenced PTP1B, mouse hepatocytes from wild-type and PTP1B-deficient mice, and a mouse model of chronic APAP treatment were used to examine the mechanisms involving PTP1B in the effects of APAP on glucose homeostasis and hepatic insulin signaling. In APAP-treated human hepatocytes at concentrations that did not induce death, phosphorylation of JNK and PTP1B expression and enzymatic activity were increased. APAP pretreatment inhibited activation of the early steps of insulin signaling and decreased Akt phosphorylation. The effects of APAP in insulin signaling were prevented by suramin, a PTP1B inhibitor, or rosiglitazone that decreased PTP1B levels. Likewise, PTP1B deficiency in human or mouse hepatocytes protected against APAP-mediated impairment in insulin signaling. These signaling pathways were modulated in mice with chronic APAP treatment, resulting in protection against APAP-mediated hepatic insulin resistance and alterations in islet alpha/beta cell ratio in PTP1B(-/-) mice. Our results demonstrate negative cross-talk between signaling pathways triggered by APAP and insulin signaling in hepatocytes, which is in part mediated by PTP1B. Moreover, our in vivo data suggest that chronic use of APAP may be associated with insulin resistance in the liver.


Assuntos
Acetaminofen/química , Hepatócitos/efeitos dos fármacos , Insulina/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular , Inativação Gênica , Glucose/metabolismo , Teste de Tolerância a Glucose , Glutationa Transferase/metabolismo , Hepatócitos/citologia , Homeostase , Humanos , Ilhotas Pancreáticas/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Rosiglitazona , Transdução de Sinais , Suramina/química , Tiazolidinedionas/química
20.
J Biol Chem ; 288(21): 15342-51, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23572518

RESUMO

Cot/tpl2 (MAP3K8) activates MKK1/2-Erk1/2 following stimulation of the Toll-like/IL-1 receptor superfamily. Here, we investigated the role of Cot/tpl2 in sterile inflammation and drug-induced liver toxicity. Cot/tpl2 KO mice exhibited reduced hepatic injury after acetaminophen challenge, as evidenced by decreased serum levels of both alanine and aspartate aminotransferases, decreased hepatic necrosis, and increased survival relative to Wt mice. Serum levels of both alanine and aspartate aminotransferases were also lower after intraperitoneal injection of acetaminophen in mice expressing an inactive form of Cot/tpl2 compared with Wt mice, suggesting that Cot/tpl2 activity contributes to acetaminophen-induced liver injury. Furthermore, Cot/tpl2 deficiency reduced neutrophil and macrophage infiltration in the liver of mice treated with acetaminophen, as well as their hepatic and systemic levels of IL-1α. Intraperitoneal injection of damage-associated molecular patterns from necrotic hepatocytes also impaired the recruitment of leukocytes and decreased the levels of several cytokines in the peritoneal cavity in Cot/tpl2 KO mice compared with Wt counterparts. Moreover, similar activation profiles of intracellular pathways were observed in Wt macrophages stimulated with Wt or Cot/tpl2 KO damage-associated molecular patterns. However, upon stimulation with damage-associated molecular patterns, the activation of Erk1/2 and JNK was deficient in Cot/tpl2 KO macrophages compared with their Wt counterparts; an effect accompanied by weaker release of several cytokines, including IL-1α, an important component in the development of sterile inflammation. Taken together, these findings indicate that Cot/tpl2 contributes to acetaminophen-induced liver injury, providing some insight into the underlying molecular mechanisms.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/enzimologia , Fígado/enzimologia , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Acetaminofen/farmacologia , Alanina Transaminase/sangue , Alanina Transaminase/genética , Analgésicos não Narcóticos/farmacologia , Animais , Aspartato Aminotransferases/sangue , Aspartato Aminotransferases/genética , Linhagem Celular Transformada , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/patologia , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Fígado/patologia , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Macrófagos/enzimologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/genética , Neutrófilos/enzimologia , Neutrófilos/patologia , Proteínas Proto-Oncogênicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA