Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Mol Ecol ; 32(3): 542-559, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35000273

RESUMO

Inferring the genomic basis of local adaptation is a long-standing goal of evolutionary biology. Beyond its fundamental evolutionary implications, such knowledge can guide conservation decisions for populations of conservation and management concern. Here, we investigated the genomic basis of local adaptation in the Coho salmon (Oncorhynchus kisutch) across its entire North American range. We hypothesized that extensive spatial variation in environmental conditions and the species' homing behaviour may promote the establishment of local adaptation. We genotyped 7829 individuals representing 217 sampling locations at more than 100,000 high-quality RADseq loci to investigate how recombination might affect the detection of loci putatively under selection and took advantage of the precise description of the demographic history of the species from our previous work to draw accurate population genomic inferences about local adaptation. The results indicated that genetic differentiation scans and genetic-environment association analyses were both significantly affected by variation in recombination rate as low recombination regions displayed an increased number of outliers. By taking these confounding factors into consideration, we revealed that migration distance was the primary selective factor driving local adaptation and partial parallel divergence among distant populations. Moreover, we identified several candidate single nucleotide polymorphisms associated with long-distance migration and altitude including a gene known to be involved in adaptation to altitude in other species. The evolutionary implications of our findings are discussed along with conservation applications.


Assuntos
Oncorhynchus kisutch , Humanos , Animais , Oncorhynchus kisutch/genética , Genética Populacional , Adaptação Fisiológica/genética , Deriva Genética , Genoma , Polimorfismo de Nucleotídeo Único/genética
3.
PLoS Genet ; 16(8): e1008348, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845885

RESUMO

A thorough reconstruction of historical processes is essential for a comprehensive understanding of the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded recently, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.


Assuntos
Distribuição Animal , Acúmulo de Mutações , Oncorhynchus kisutch/genética , Animais , Evolução Molecular , Modelos Genéticos
4.
Evol Appl ; 17(3): e13667, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38463750

RESUMO

Modern fisheries management strives to balance opposing goals of protection for weak stocks and opportunity for harvesting healthy stocks. Test fisheries can aid management of anadromous fishes if they can forecast the strength and timing of an annual run with adequate time to allow fisheries planning. Integration of genetic stock identification (GSI) can further maximize utility of test fisheries by resolving run forecasts into weak- and healthy-stock subcomponents. Using 5 years (2017-2022) of test fishery data, our study evaluated accuracy, resolution, and lead time of predictions for stock-specific run timing and abundance of Columbia River spring Chinook salmon (Oncorhynchus tshawytscha). We determined if this test fishery (1) could use visual stock identification (VSI) to forecast at the coarse stock resolution (i.e., classification of "lower" vs. "upriver" stocks) upon which current management is based and (2) could be enhanced with GSI to forecast at higher stock resolution. VSI accurately identified coarse stocks (83.3% GSI concordance), and estimated a proxy for abundance (catch per unit effort, CPUE) of the upriver stock in the test fishery that was correlated (R 2 = 0.90) with spring Chinook salmon abundance at Bonneville dam (Rkm 235). Salmon travel rates (~8.6 Rkm/day) provided predictions with 2-week lead time prior to dam passage. Importantly, GSI resolved this predictive ability as finely as the hatchery broodstock level. Lower river stock CPUE in the test fishery was correlated with abundance at Willamette Falls (Rkm 196, R 2 = 0.62), but could not be as finely resolved as achieved for upriver stocks. We described steps to combine VSI and GSI to provide timely in-season information and with prediction accuracy of ~12.4 mean absolute percentage error and high stock resolution to help plan Columbia River mainstem fisheries.

5.
PLoS One ; 16(3): e0247031, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33657188

RESUMO

Understanding diet is critical for conservation of endangered predators. Southern Resident killer whales (SRKW) (Orcinus orca) are an endangered population occurring primarily along the outer coast and inland waters of Washington and British Columbia. Insufficient prey has been identified as a factor limiting their recovery, so a clear understanding of their seasonal diet is a high conservation priority. Previous studies have shown that their summer diet in inland waters consists primarily of Chinook salmon (Oncorhynchus tshawytscha), despite that species' rarity compared to some other salmonids. During other times of the year, when occurrence patterns include other portions of their range, their diet remains largely unknown. To address this data gap, we collected feces and prey remains from October to May 2004-2017 in both the Salish Sea and outer coast waters. Using visual and genetic species identification for prey remains and genetic approaches for fecal samples, we characterized the diet of the SRKWs in fall, winter, and spring. Chinook salmon were identified as an important prey item year-round, averaging ~50% of their diet in the fall, increasing to 70-80% in the mid-winter/early spring, and increasing to nearly 100% in the spring. Other salmon species and non-salmonid fishes, also made substantial dietary contributions. The relatively high species diversity in winter suggested a possible lack of Chinook salmon, probably due to seasonally lower densities, based on SRKW's proclivity to selectively consume this species in other seasons. A wide diversity of Chinook salmon stocks were consumed, many of which are also at risk. Although outer coast Chinook samples included 14 stocks, four rivers systems accounted for over 90% of samples, predominantly the Columbia River. Increasing the abundance of Chinook salmon stocks that inhabit the whales' winter range may be an effective conservation strategy for this population.


Assuntos
Ração Animal/análise , Comportamento Predatório/fisiologia , Salmão/genética , Salmonidae/genética , Análise de Sequência de DNA/veterinária , Orca/fisiologia , Animais , Colúmbia Britânica , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Fezes/química , Sequenciamento de Nucleotídeos em Larga Escala , Rios , Salmão/classificação , Salmonidae/classificação , Estações do Ano , Washington
6.
Genes (Basel) ; 10(5)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31075961

RESUMO

Genetic selection is often implicated as the underlying cause of heritable phenotypic differences between hatchery and wild populations of steelhead trout (Oncorhynchus mykiss) that also differ in lifetime fitness. Developmental plasticity, which can also affect fitness, may be mediated by epigenetic mechanisms such as DNA methylation. Our previous study identified significant differences in DNA methylation between adult hatchery- and natural-origin steelhead from the same population that could not be distinguished by DNA sequence variation. In the current study, we tested whether hatchery-rearing conditions can influence patterns of DNA methylation in steelhead with known genetic backgrounds, and assessed the stability of these changes over time. Eyed-embryos from 22 families of Methow River steelhead were split across traditional hatchery tanks or a simulated stream-rearing environment for 8 months, followed by a second year in a common hatchery tank environment. Family assignments were made using a genetic parentage analysis to account for relatedness among individuals. DNA methylation patterns were examined in the liver, a relatively homogeneous organ that regulates metabolic processes and somatic growth, of juveniles at two time points: after eight months of rearing in either a tank or stream environment and after a subsequent year of rearing in a common tank environment. Further, we analyzed DNA methylation in the sperm of mature 2-year-old males from the earlier described treatments to assess the potential of environmentally-induced changes to be passed to offspring. Hepatic DNA methylation changes in response to hatchery versus stream-rearing in yearling fish were substantial, but few persisted after a second year in the tank environment. However, the early rearing environment appeared to affect how fish responded to developmental and environmental signals during the second year since novel DNA methylation differences were identified in the livers of hatchery versus stream-reared fish after a year of common tank rearing. Furthermore, we found profound differences in DNA methylation due to age, irrespective of rearing treatment. This could be due to smoltification associated changes in liver physiology after the second year of rearing. Although few rearing-treatment effects were observed in the sperm methylome, strong family effects were observed. These data suggest limited potential for intergenerational changes, but highlight the importance of understanding the effects of kinship among studied individuals in order to properly analyze and interpret DNA methylation data in natural populations. Our work is the first to study family effects and temporal dynamics of DNA methylation patterns in response to hatchery-rearing.


Assuntos
Aquicultura/métodos , Metilação de DNA , Oncorhynchus mykiss/genética , Animais , Embrião não Mamífero , Feminino , Masculino , Rios
7.
PLoS One ; 13(1): e0190799, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29351326

RESUMO

Spatial and temporal fluctuations in productivity and abundance confound assessments of captive propagation programs aimed at recovery of Threatened and Endangered populations. We conducted a 17 year before-after-control-impact experiment to determine the effects of a captive rearing program for anadromous steelhead trout (Oncorhynchus mykiss) on a key indicator of natural spawner abundance (naturally produced nests or 'redds'). The supplemented population exhibited a significant (2.6-fold) increase in redd abundance in the generation following supplementation. Four non-supplemented (control) populations monitored over the same 17 year period exhibited stable or decreasing trends in redd abundance. Expected heterozygosity in the supplemented population increased significantly. Allelic richness increased, but to a lesser (non-significant) degree. Estimates of the effective number of breeders increased from a harmonic mean of 24.4 in the generation before supplementation to 38.9 after supplementation. Several non-conventional aspects of the captive rearing program may have contributed to the positive response in the natural population.


Assuntos
Conservação dos Recursos Naturais/métodos , Variação Genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/fisiologia , Animais , Cruzamento , Feminino , Pesqueiros , Masculino , Reprodução , Rios , Washington
8.
PLoS One ; 8(11): e79931, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224023

RESUMO

Oncorhynchus mykiss have a diverse array of life history types, and understanding the relationship among types is important for management of the species. Patterns of gene flow between sympatric freshwater resident O. mykiss, commonly known as rainbow trout, and anadromous O. mykiss, commonly known as steelhead, populations are complex and poorly understood. In this study, we attempt to determine the occurrence and pathways of gene flow and the degree of genetic similarity between sympatric resident and anadromous O. mykiss in three river systems, and investigate whether resident O. mykiss are producing anadromous offspring in these rivers, two of which have complete barriers to upstream migration. We found that the population structure of the O. mykiss in these rivers appears to be influenced more by the presence of a barrier to upstream migration than by life history type. The sex ratio of resident O. mykiss located above a barrier, and smolts captured in screw traps was significantly skewed in favor of females, whereas the reverse was true below the barriers, suggesting that male resident O. mykiss readily migrate downstream over the barrier, and that precocious male maturation may be occurring in the anadromous populations. Through paternity analyses, we also provide direct confirmation that resident O. mykiss can produce offspring that become anadromous. Most (89%) of the resident O. mykiss that produced anadromous offspring were males. Our results add to the growing body of evidence that shows that gene flow does readily occur between sympatric resident and anadromous O. mykiss life history types, and indicates that resident O. mykiss populations may be a potential repository of genes for the anadromous life history type.


Assuntos
Fluxo Gênico/genética , Oncorhynchus mykiss/metabolismo , Migração Animal , Animais , Feminino , Masculino , Oncorhynchus mykiss/genética , Rios
9.
PLoS One ; 5(9)2010 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-20862225

RESUMO

BACKGROUND: Hybridization between coastal cutthroat trout (Oncorhynchus clarki clarki) and steelhead or rainbow trout (Oncorhynchus mykiss) has been documented in several streams along the North American west coast. The two species occupy similar freshwater habitats but the anadromous forms differ greatly in the duration of marine residence and migration patterns at sea. Intermediate morphological, physiological, and performance traits have been reported for hybrids but little information has been published comparing the behavior of hybrids to the pure species. METHODOLOGY/PRINCIPAL FINDINGS: This study used acoustic telemetry to record the movements of 52 cutthroat, 42 steelhead x cutthroat hybrids, and 89 steelhead smolts, all wild, that migrated from Big Beef Creek into Hood Canal (Puget Sound, Washington). Various spatial and temporal metrics were used to compare the behavior of the pure species to their hybrids. Median hybrid residence time, estuary time, and tortuosity values were intermediate compared to the pure species. The median total track distance was greater for hybrids than for either cutthroat or steelhead. At the end of each track, most steelhead (80%) were located near or north of the Hood Canal, as expected for this seaward migrating species, whereas most cutthroat (89%) were within 8 kilometers of the estuary. Most hybrids (70%) were detected leaving Hood Canal, though a substantial percentage (20%) remained near the Big Beef Creek estuary. More hybrids (7.5%) than pure cutthroat (4.5%) or steelhead (0.0%) were last detected in the southern reaches of Hood Canal. CONCLUSIONS/SIGNIFICANCE: Given the similarity in freshwater ecology between the species, differences in marine ecology may play an important role in maintaining species integrity in areas of sympatry.


Assuntos
Migração Animal , Quimera/fisiologia , Oncorhynchus mykiss/fisiologia , Animais , Quimera/genética , Hibridização Genética , Oncorhynchus mykiss/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA