Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
NMR Biomed ; 37(4): e5083, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38217329

RESUMO

Carnosine, an MR-visible dipeptide in human muscle, is well characterized by two peaks at ~8 and ~7 ppm from C2 and C4 imidazole protons. Like creatine and other metabolites, carnosine is subject to residual dipolar coupling in the anisotropic environment of muscle fibers, but the effects have not been studied extensively. Single-voxel TE 30-32 PRESS spectra from three different 3T studies were acquired from gastrocnemius medialis and soleus muscles in the human lower leg. In these studies, carnosine T2 values were measured, and spectra were obtained at three different foot angles. LCModel was used to fit the carnosine peaks with a basis set that was generated using shaped RF pulses and included a range of dipolar couplings affecting the C4 peak. A seven-parameter analytic expression was used to fit the CH2 doublets of creatine. It incorporated an optimized "effective TE" value to model the effect of shaped RF pulses. The fits confirm that the triplet C4 peak of carnosine is dipolar coupled to a pair of CH2 protons, with no need to include a contribution from a separate pool of freely rotating uncoupled carnosine. Moreover, the couplings experienced by carnosine C4 protons and creatine CH2 protons are strongly correlated (R2 = 0.88, P<0.001), exhibiting a similar 3cos2 θ - 1 dependence on the angle θ between fiber orientation and B0. T2 values for the singlet C2 peak of gastrocnemius carnosine are inversely proportional to the C4 dipolar coupling strength (R2 = 0.97, P < 0.001), which in turn is a function of foot orientation. This dependence indicates that careful positioning of the foot while acquiring lower leg muscle spectra is important to obtain reproducible carnosine concentrations. As proton magnetic resonance spectroscopy of carnosine is currently used to non-invasively estimate the muscle fiber typology, these results have important implications in sport science.


Assuntos
Carnosina , Creatina , Humanos , Creatina/metabolismo , Carnosina/análise , Prótons , Espectroscopia de Ressonância Magnética/métodos , Músculo Esquelético/metabolismo
2.
Scand J Med Sci Sports ; 34(6): e14668, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38802727

RESUMO

Multiple intramuscular variables have been proposed to explain the high variability in resistance training induced muscle hypertrophy across humans. This study investigated if muscular androgen receptor (AR), estrogen receptor α (ERα) and ß (ERß) content and fiber capillarization are associated with fiber and whole-muscle hypertrophy after chronic resistance training. Male (n = 11) and female (n = 10) resistance training novices (22.1 ± 2.2 years) trained their knee extensors 3×/week for 10 weeks. Vastus lateralis biopsies were taken at baseline and post the training period to determine changes in fiber type specific cross-sectional area (CSA) and fiber capillarization by immunohistochemistry and, intramuscular AR, ERα and ERß content by Western blotting. Vastus lateralis volume was quantified by MRI-based 3D segmentation. Vastus lateralis muscle volume significantly increased over the training period (+7.22%; range: -1.82 to +18.8%, p < 0.0001) but no changes occurred in all fiber (+1.64%; range: -21 to +34%, p = 0.869), type I fiber (+1.33%; range: -24 to +41%, p = 0.952) and type II fiber CSA (+2.19%; range: -23 to +29%, p = 0.838). However, wide inter-individual ranges were found. Resistance training increased the protein expression of ERα but not ERß and AR, and the increase in ERα content was positively related to changes in fiber CSA. Only for the type II fibers, the baseline capillary-to-fiber-perimeter index was positively related to type II fiber hypertrophy but not to whole muscle responsiveness. In conclusion, an upregulation of ERα content and an adequate initial fiber capillarization may be contributing factors implicated in muscle fiber hypertrophy responsiveness after chronic resistance training.


Assuntos
Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Fibras Musculares Esqueléticas , Músculo Quadríceps , Receptores Androgênicos , Treinamento Resistido , Humanos , Masculino , Treinamento Resistido/métodos , Feminino , Receptor beta de Estrogênio/metabolismo , Receptor alfa de Estrogênio/metabolismo , Adulto Jovem , Receptores Androgênicos/metabolismo , Músculo Quadríceps/metabolismo , Músculo Quadríceps/irrigação sanguínea , Músculo Quadríceps/diagnóstico por imagem , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Adulto , Hipertrofia , Capilares , Imageamento por Ressonância Magnética
3.
J Physiol ; 601(12): 2307-2327, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37038845

RESUMO

Considerable inter-individual heterogeneity exists in the muscular adaptations to resistance training. It has been proposed that fast-twitch fibres are more sensitive to hypertrophic stimuli and thus that variation in muscle fibre type composition is a contributing factor to the magnitude of training response. This study investigated if the inter-individual variability in resistance training adaptations is determined by muscle typology and if the most appropriate weekly training frequency depends on muscle typology. In strength-training novices, 11 slow (ST) and 10 fast typology (FT) individuals were selected by measuring muscle carnosine with proton magnetic resonance spectroscopy. Participants trained both upper arm and leg muscles to failure at 60% of one-repetition maximum (1RM) for 10 weeks, whereby one arm and leg trained 3×/week and the contralateral arm and leg 2×/week. Muscle volume (MRI-based 3D segmentation), maximal dynamic strength (1RM) and fibre type-specific cross-sectional area (vastus lateralis biopsies) were evaluated. The training response for total muscle volume (+3 to +14%), fibre size (-19 to +22%) and strength (+17 to +47%) showed considerable inter-individual variability, but these could not be attributed to differences in muscle typology. However, ST individuals performed a significantly higher training volume to gain these similar adaptations than FT individuals. The limb that trained 3×/week had generally more pronounced hypertrophy than the limb that trained 2×/week, and there was no interaction with muscle typology. In conclusion, muscle typology cannot explain the high variability in resistance training adaptations when training is performed to failure at 60% of 1RM. KEY POINTS: This study investigated the influence of muscle typology (muscle fibre type composition) on the variability in resistance training adaptations and on its role in the individualization of resistance training frequency. We demonstrate that an individual's muscle typology cannot explain the inter-individual variability in resistance training-induced increases in muscle volume, maximal dynamic strength and fibre cross-sectional area when repetitions are performed to failure. Importantly, slow typology individuals performed a significantly higher training volume to obtain similar adaptations compared to fast typology individuals. Muscle typology does not determine the most appropriate resistance training frequency. However, regardless of muscle typology, an additional weekly training (3×/week vs. 2×/week) increases muscle hypertrophy but not maximal dynamic strength. These findings expand on our understanding of the underlying mechanisms for the large inter-individual variability in resistance training adaptations.


Assuntos
Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Músculo Esquelético/fisiologia , Fibras Musculares Esqueléticas , Músculo Quadríceps , Adaptação Fisiológica , Hipertrofia , Força Muscular/fisiologia
4.
Med Sci Sports Exerc ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38687626

RESUMO

PURPOSE: Human skeletal muscle has the profound ability to hypertrophy in response to resistance training (RT). Yet, this has a high energy and protein cost and is presumably mainly restricted to recruited muscles. It remains largely unknown what happens with non-recruited muscles during RT. This study investigated the volume changes of 17 recruited and 13 non-recruited muscles during a 10-week single-joint RT program targeting upper arm and upper leg musculature. METHODS: Muscle volume changes were measured by manual or automatic 3D segmentation in 21 RT novices. Subjects ate ad libitum during the study and energy and protein intake were assessed by self-reported diaries. RESULTS: Post-training, all recruited muscles increased in volume (range: +2.2% to +17.7%, p < 0.05) while the non-recruited adductor magnus (mean: -1.5 ± 3.1%, p = 0.038) and soleus (-2.4 ± 2.3%, p = 0.0004) decreased in volume. Net muscle growth (r = 0.453, p = 0.045) and changes in adductor magnus volume (r = 0.450, p = 0.047) were positively associated with protein intake. Changes in total non-recruited muscle volume (r = 0.469, p = 0.037), adductor magnus (r = 0.640, p = 0.002), adductor longus (r = 0.465, p = 0.039) and soleus muscle volume (r = 0.481, p = 0.032) were positively related to energy intake (p < 0.05). When subjects were divided into a HIGH or LOW energy intake group, overall non-recruited muscle volume (-1.7 ± 2.0%), adductor longus (-5.6 ± 3.7%), adductor magnus (-2.8 ± 2.4%) and soleus volume (-3.7 ± 1.8%) decreased significantly (p < 0.05) in the LOW but not the HIGH group. CONCLUSIONS: To our knowledge, this is the first study documenting that some non-recruited muscles significantly atrophy during a period of resistance training. Our data therefore suggest muscle mass reallocation, i.e., that hypertrophy in recruited muscles takes place at the expense of atrophy in non-recruited muscles, especially when energy and protein availability are limited.

5.
Eur J Sport Sci ; 23(10): 2021-2030, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37092841

RESUMO

This study examined whether muscle typology (muscle fibre type composition) is related to maximal strength and whether it can explain the high inter-individual variability in number of repetitions to failure during resistance training. Ninety-five resistance training novices (57 males) were assessed for their maximal isometric knee extension strength and muscle typology. Muscle typology was estimated by measuring carnosine in the soleus, gastrocnemius and/or vastus lateralis using proton magnetic resonance spectroscopy. Forty-four subjects (22 males) performed dynamic strength tests (1RM) and 3 sets of leg extensions and curls to failure (60%1RM) to determine the association between muscle typology and (total) number of repetitions. Twenty-one subjects performed additional biceps curls and triceps extensions (60%1RM) to assess influence of exercise, 23 subjects performed additional leg extensions and curls at 80% and 40%1RM to evaluate influence of training load. There was a weak but significant relationship between muscle typology and maximal isometric strength (r = 0.22, p = 0.03) favouring the fast typology individuals. Slow and fast typology individuals did not differ in upper arm and upper leg 1RM. Total number of repetitions was related to muscle typology at 80% (r = -0.42; p = 0.04) and 60% (p = -0.44; p = 0.003) but not at 40%1RM. Slow typology individuals performed more repetitions to failure at 60%1RM in the leg extension (p = 0.03), leg curl (p = 0.01) and biceps curl (p = 0.02). In conclusion, muscle typology has a small contribution to maximal isometric strength but not dynamic strength and partly determines the number of repetitions to failure during resistance training. This insight can help individualizing resistance training prescriptions.


Having a fast muscle typology is positively associated with maximal isometric strength delivery in resistance training novices.The muscle typology seems to be a determining characteristic in the number of repetitions that can be performed during resistance training as slow typology individuals perform significantly more repetitions to failure compared to fast typology individuals.This study indicates the importance for coaches to shift from using traditional load-repetition tables and 1RM prediction equations to individualized 1RM testing and training volume prescriptions.


Assuntos
Treinamento Resistido , Masculino , Humanos , Treinamento Resistido/métodos , Força Muscular/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Braço
6.
J Appl Physiol (1985) ; 131(4): 1241-1250, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473575

RESUMO

Due to the invasiveness of a muscle biopsy, there is fragmentary information on the existence and possible origin of a sexual dimorphism in the skeletal muscle concentrations of the energy delivery-related metabolites carnosine, creatine, and carnitine. As these metabolites can be noninvasively monitored by proton magnetic resonance spectroscopy, this technique offers the possibility to investigate if sexual dimorphisms are present in an adult reference population and if these dimorphisms originated during puberty using a longitudinal design. Concentrations of carnosine, creatine, and carnitine were examined using proton magnetic resonance spectroscopy in the soleus and gastrocnemius muscles of an adult reference population of female (n = 50) and male adults (n = 50). For the longitudinal follow-up over puberty, 29 boys and 28 girls were scanned prepuberty. Six years later, 24 boys and 24 girls were rescanned postpuberty. A sexual dimorphism was present in carnosine and creatine, but not carnitine, in the adult reference population. Carnosine was 28.5% higher in the gastrocnemius (P < 0.001) and carnosine and creatine were respectively 19.9% (P < 0.001) and 18.2% (P < 0.001) higher in the soleus of male when compared with female adults. Through puberty, carnosine increased more in male subjects compared with female subjects, both in the gastrocnemius (+10.43% and -10.83%, respectively; interaction effect: P = 0.002) and in the soleus (+24.30% and +5.49%, respectively; interaction effect: P = 0.012). No significant effect of puberty was found in either creatine (interaction effect: P = 0.307) or carnitine (interaction effect: P = 0.066). A sexual dimorphism in the adult human muscle is present in carnosine and creatine, but not in carnitine.NEW & NOTEWORTHY This is the first study to investigate sexual dimorphisms in skeletal muscle carnosine, creatine, and carnitine concentrations in a substantial adult reference population (n = 100). A sexual dimorphism is present in both carnosine and creatine at adult age. The origin of the sexual dimorphisms is investigated using a longitudinal design over puberty in 24 males and 24 females. The sexual dimorphism in carnosine originated partly during puberty for carnosine, but not for creatine.


Assuntos
Carnosina , Adulto , Carnitina , Creatina , Feminino , Seguimentos , Humanos , Masculino , Músculo Esquelético , Puberdade
7.
Med Sci Sports Exerc ; 53(4): 816-824, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33105386

RESUMO

PURPOSE: Classic track-and-field studies demonstrated that elite endurance athletes exhibit a slow muscle typology, whereas elite sprint athletes have a predominant fast muscle typology. In elite cycling, conclusive data on muscle typology are scarce, which may be due to the invasive nature of muscle biopsies. The noninvasive estimation of muscle typology through the measurement of muscle carnosine enabled to explore the muscle typology of 80 world-class cyclists of different disciplines. METHODS: The muscle carnosine content of 80 cyclists (4 bicycle motor cross racing [BMX], 33 track, 8 cyclo-cross, 24 road, and 11 mountain bike) was measured in the soleus and gastrocnemius by proton magnetic resonance spectroscopy and expressed as a z-score relative to a reference population. Track cyclists were divided into track sprint and endurance cyclists based on their Union Cycliste Internationale (UCI) ranking. Moreover, road cyclists were further characterized based on the percentage of UCI points earned during either single and multistage races. RESULTS: BMX cyclists (carnosine aggregate z-score of 1.33) are characterized by a faster muscle typology than track, cyclo-cross, road, and mountain bike cyclists (carnosine aggregate z-score of -0.08, -0.76, -0.96, and -1.02, respectively; P < 0.05). Track cyclists also possess a faster muscle typology compared with mountain bikers (P = 0.033) and road cyclists (P = 0.005). Moreover, track sprinters show a significant faster muscle typology (carnosine aggregate z-score of 0.87) compared with track endurance cyclists (carnosine aggregate z-score of -0.44) (P < 0.001). In road cyclists, the higher the carnosine aggregate z-score, the higher the percentage of UCI points gained during single-stage races (r = 0.517, P = 0.010). CONCLUSIONS: Prominent differences in the noninvasively determined muscle typology exist between elite cyclists of various disciplines, which opens opportunities for application in talent orientation and transfer.


Assuntos
Atletas , Ciclismo , Carnosina/análise , Músculo Esquelético/química , Adulto , Análise de Variância , Ciclismo/classificação , Biomarcadores/análise , Europa (Continente) , Feminino , Humanos , Masculino , Músculo Esquelético/anatomia & histologia , Resistência Física , Espectroscopia de Prótons por Ressonância Magnética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA