RESUMO
Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.
Assuntos
Disautonomia Familiar , Peptídeos e Proteínas de Sinalização Intracelular , Doenças Neurodegenerativas , Doenças do Nervo Óptico , Células Ganglionares da Retina , Animais , Modelos Animais de Doenças , Disautonomia Familiar/patologia , Humanos , Camundongos , Doenças Neurodegenerativas/patologia , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologiaRESUMO
The COVID-19 pandemic continues to have devastating consequences on health and economy, even after the approval of safe and effective vaccines. Waning immunity, the emergence of variants of concern, breakthrough infections, and lack of global vaccine access and acceptance perpetuate the epidemic. Here, we demonstrate that a single injection of an adenoassociated virus (AAV)-based COVID-19 vaccine elicits at least 17-month-long neutralizing antibody responses in non-human primates at levels that were previously shown to protect from viral challenge. To improve the scalability of this durable vaccine candidate, we further optimized the vector design for greater potency at a reduced dose in mice and non-human primates. Finally, we show that the platform can be rapidly adapted to other variants of concern to robustly maintain immunogenicity and protect from challenge. In summary, we demonstrate this class of AAV can provide durable immunogenicity, provide protection at dose that is low and scalable, and be adapted readily to novel emerging vaccine antigens thus may provide a potent tool in the ongoing fight against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).
Assuntos
COVID-19 , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Dependovirus/genética , Humanos , Macaca , Camundongos , Pandemias/prevenção & controle , SARS-CoV-2/genéticaRESUMO
Adeno-associated virus (AAV) is a highly promising gene transfer vector, yet major cellular requirements for AAV entry are poorly understood. Using a genome-wide CRISPR screen for entry of evolutionarily divergent serotype AAVrh32.33, we identified GPR108, a member of the G protein-coupled receptor superfamily, as an AAV entry factor. Of greater than 20 divergent AAVs across all AAV clades tested in human cell lines, only AAV5 transduction was unaffected in the GPR108 knockout (KO). GPR108 dependency was further shown in murine and primary cells in vitro. These findings are further validated in vivo, as the Gpr108 KO mouse demonstrates 10- to 100-fold reduced expression for AAV8 and rh32.33 but not AAV5. Mechanistically, both GPR108 N- and C-terminal domains are required for transduction, and on the capsid, a VP1 unique domain that is not conserved on AAV5 can be transferred to confer GPR108 independence onto AAV2 chimeras. In vitro binding and fractionation studies indicate reduced nuclear import and cytosolic accumulation in the absence of GPR108. We thus have identified the second of two AAV entry factors that is conserved between mice and humans relevant both in vitro and in vivo, further providing a mechanistic understanding to the tropism of AAV gene therapy vectors.
Assuntos
Sequência Conservada , Dependovirus/genética , Vetores Genéticos/genética , Motivos de Aminoácidos , Animais , Sistemas CRISPR-Cas , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dependovirus/classificação , Evolução Molecular , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética , Genoma Viral , Complexo de Golgi/metabolismo , Humanos , Filogenia , Domínios e Motivos de Interação entre ProteínasRESUMO
The adeno-associated virus (AAV) serves as a broadly used vector system for in vivo gene delivery. The process of AAV capsid assembly remains poorly understood. The viral cofactor assembly-activating protein (AAP) is required for maximum AAV production and has multiple roles in capsid assembly, namely, trafficking of the structural proteins (VP) to the nuclear site of assembly, promoting the stability of VP against multiple degradation pathways, and facilitating stable interactions between VP monomers. The N-terminal 60 amino acids of AAP (AAPN) are essential for these functions. Presumably, AAP must physically interact with VP to execute its multiple functions, but the molecular nature of the AAP-VP interaction is not well understood. Here, we query how structurally related AAVs functionally engage AAP from AAV serotype 2 (AAP2) toward virion assembly. These studies led to the identification of key residues on the lumenal capsid surface that are important for AAP-VP and for VP-VP interactions. Replacing a cluster of glutamic acid residues with a glutamine-rich motif on the conserved VP beta-barrel structure of variants incompatible with AAP2 creates a gain-of-function mutant compatible with AAP2. Conversely, mutating positively charged residues within the hydrophobic region of AAP2 and conserved core domains within AAPN creates a gain-of-function AAP2 mutant that rescues assembly of the incompatible variant. Our results suggest a model for capsid assembly where surface charge/neutrality dictates an interaction between AAPN and the lumenal VP surface to nucleate capsid assembly.IMPORTANCE Efforts to engineer the AAV capsid to gain desirable properties for gene therapy (e.g., tropism, reduced immunogenicity, and higher potency) require that capsid modifications do not affect particle assembly. The relationship between VP and the cofactor that facilitates its assembly, AAP, is central to both assembly preservation and vector production. Understanding the requirements for this compatibility can inform manufacturing strategies to maximize production and reduce costs. Additionally, library-based approaches that simultaneously examine a large number of capsid variants would benefit from a universally functional AAP, which could hedge against overlooking variants with potentially valuable phenotypes that were lost during vector library production due to incompatibility with the cognate AAP. Studying interactions between the structural and nonstructural components of AAV enhances our fundamental knowledge of capsid assembly mechanisms and the protein-protein interactions required for productive assembly of the icosahedral capsid.
Assuntos
Proteínas do Capsídeo/genética , Parvovirinae/genética , Montagem de Vírus/genética , Sequência de Aminoácidos , Aminoácidos , Capsídeo/virologia , Linhagem Celular , Núcleo Celular/genética , Núcleo Celular/virologia , Dependovirus , Vetores Genéticos/genética , Células HEK293 , Humanos , Transporte Proteico/genética , Vírion/genéticaRESUMO
Determinants and mechanisms of cell attachment and entry steer adeno-associated virus (AAV) in its utility as a gene therapy vector. Thus far, a systematic assessment of how diverse AAV serotypes engage their proteinaceous receptor AAVR (KIAA0319L) to establish transduction has been lacking, despite potential implications for cell and tissue tropism. Here, a large set of human and simian AAVs as well as in silico-reconstructed ancestral AAV capsids were interrogated for AAVR usage. We identified a distinct AAV capsid lineage comprised of AAV4 and AAVrh32.33 that can bind and transduce cells in the absence of AAVR, independent of the multiplicity of infection. Virus overlay assays and rescue experiments in nonpermissive cells demonstrate that these AAVs are unable to bind to or use the AAVR protein for entry. Further evidence for a distinct entry pathway was observed in vivo, as AAVR knockout mice were equally as permissive to transduction by AAVrh32.33 as wild-type mice upon systemic injection. We interestingly observe that some AAV capsids undergo a low level of transduction in the absence of AAVR, both in vitro and in vivo, suggesting that some capsids may have a multimodal entry pathway. In aggregate, our results demonstrate that AAVR usage is conserved among all primate AAVs except for those of the AAV4 lineage, and a non-AAVR pathway may be available to other serotypes. This work furthers our understanding of the entry of AAV, a vector system of broad utility in gene therapy.IMPORTANCE Adeno-associated virus (AAV) is a nonpathogenic virus that is used as a vehicle for gene delivery. Here, we have identified several situations in which transduction is retained in both cell lines and a mouse model in the absence of a previously defined entry receptor, AAVR. Defining the molecular determinants of the infectious pathway of this highly relevant viral vector system can help refine future applications and therapies with this vector.
Assuntos
Capsídeo/metabolismo , Dependovirus , Vetores Genéticos , Transdução Genética , Internalização do Vírus , Animais , Linhagem Celular , Dependovirus/genética , Dependovirus/metabolismo , Camundongos , Camundongos Knockout , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismoRESUMO
BACKGROUND: After injury, mesenchymal progenitors in the kidney interstitium differentiate into myofibroblasts, cells that have a critical role in kidney fibrogenesis. The ability to deliver genetic material to myofibroblast progenitors could allow new therapeutic approaches to treat kidney fibrosis. Preclinical and clinical studies show that adeno-associated viruses (AAVs) efficiently and safely transduce various tissue targets in vivo; however, protocols for transduction of kidney mesenchymal cells have not been established. METHODS: We evaluated the transduction profiles of various pseudotyped AAV vectors expressing either GFP or Cre recombinase reporters in mouse kidney and human kidney organoids. RESULTS: Of the six AAVs tested, a synthetic AAV called Anc80 showed specific and high-efficiency transduction of kidney stroma and mesangial cells. We characterized the cell specificity, dose dependence, and expression kinetics and showed the efficacy of this approach by knocking out Gli2 from kidney mesenchymal cells by injection of Anc80-Cre virus into either homozygous or heterozygous Gli2-floxed mice. After unilateral ureteral obstruction, the homozygous Gli2-floxed mice had less fibrosis than the Gli2 heterozygotes had. We observed the same antifibrotic effect in ß-catenin-floxed mice injected with Anc80-Cre virus before obstructive injury, strongly supporting a central role for canonical Wnt signaling in kidney myofibroblast activation. Finally, we showed that the Anc80 synthetic virus can transduce the mesenchymal lineage in human kidney organoids. CONCLUSIONS: These studies establish a novel method for inducible knockout of floxed genes in mouse mesangium, pericytes, and perivascular fibroblasts and are the foundation for future gene therapy approaches to treat kidney fibrosis.
Assuntos
Dependovirus/genética , Terapia Genética/métodos , Integrases/genética , Nefropatias/terapia , Animais , Biópsia por Agulha , Modelos Animais de Doenças , Fibrose/patologia , Fibrose/terapia , Humanos , Imuno-Histoquímica , Nefropatias/patologia , Masculino , Camundongos , Camundongos Endogâmicos , Miofibroblastos/metabolismo , Pericitos/patologia , Distribuição Aleatória , Sensibilidade e Especificidade , Transdução Genética , beta Catenina/genéticaRESUMO
Leber congenital amaurosis (LCA) is a severe disorder resulting in visual impairment usually starting in the first year of life. The most frequent genetic cause of LCA is an intronic mutation in CEP290 (c.2991 + 1655A > G) that creates a cryptic splice donor site resulting in the insertion of a pseudoexon (exon X) into CEP290 mRNA. Previously, we showed that naked antisense oligonucleotides (AONs) effectively restored normal CEP290 splicing in patient-derived lymphoblastoid cells. We here explore the therapeutic potential of naked and adeno-associated virus (AAV)-packaged AONs in vitro and in vivo In both cases, AON delivery fully restored CEP290 pre-mRNA splicing, significantly increased CEP290 protein levels and rescued a ciliary phenotype present in patient-derived fibroblast cells. Moreover, administration of naked and AAV-packaged AONs to the retina of a humanized mutant Cep290 mouse model, carrying the intronic mutation, showed a statistically significant reduction of exon X-containing Cep290 transcripts, without compromising the retinal structure. Together, our data highlight the tremendous therapeutic prospective of AONs for the treatment of not only CEP290-associated LCA but potentially many other subtypes of retinal dystrophy caused by splicing mutations.
Assuntos
Antígenos de Neoplasias/genética , Cegueira/terapia , Terapia Genética , Amaurose Congênita de Leber/terapia , Proteínas de Neoplasias/genética , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Antígenos de Neoplasias/uso terapêutico , Cegueira/genética , Cegueira/patologia , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Dependovirus/genética , Modelos Animais de Doenças , Éxons/genética , Humanos , Amaurose Congênita de Leber/genética , Amaurose Congênita de Leber/patologia , Camundongos , Mutação , Proteínas de Neoplasias/uso terapêutico , Oligonucleotídeos Antissenso/genética , Fenótipo , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Retina/efeitos dos fármacos , Retina/patologiaRESUMO
Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.
Assuntos
Dependovirus , Vetores Genéticos/normas , Capsídeo/química , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dependovirus/isolamento & purificação , Dependovirus/fisiologia , Vetores Genéticos/isolamento & purificação , Humanos , Mutação , Estabilidade Proteica , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Relação Estrutura-Atividade , TermodinâmicaRESUMO
Colour vision is only achieved in the presence of healthy and functional cone photoreceptors found in the retina. It is an essential component of human vision and usually the first complaint patients undergoing vision degeneration have is the loss of daylight colour vision. Therefore, an understanding of the biology and basic mechanisms behind cone death under the degenerative state of retinal dystrophies and how the activation of the apoptotic pathway is triggered will provide valuable knowledge. It will also have broader applications for a spectrum of visual disorders and will be critical for future advances in translational research.
Assuntos
Apoptose/fisiologia , Defeitos da Visão Cromática/fisiopatologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Degeneração Retiniana/fisiopatologia , Animais , Apoptose/genética , Visão de Cores/genética , Visão de Cores/fisiologia , Defeitos da Visão Cromática/genética , Modelos Animais de Doenças , Predisposição Genética para Doença/genética , Humanos , Mutação , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/genéticaRESUMO
The Adeno-associated viruses (AAVs) are being developed as gene delivery vectors for therapeutic clinical applications. However, the host antibody immune response directed against their capsid, prevalent in â¼40-70% of the general population, depending on serotype, negatively impacts efficacy. AAVrh32.33, a novel vector developed from rhesus macaques isolates, has significantly lower seroprevalence in human populations compared to AAV2 and AAV8, which are both in clinical use. To better understand the capsid determinants of this differential immune response to AAVrh32.33, its structure was determined by X-ray crystallography to 3.5 Å resolution. The capsid viral protein (VP) structure conserves the eight-stranded ß-barrel core and αA helix reported for other parvoviruses and the distinct capsid surface topology of the AAVs: a depression at the icosahedral twofold axis, three protrusions surrounding the threefold axis, and a depression surround a cylindrical channel at the fivefold axis. A comparison to AAV2, AAV4, and AAV8, to which AAVrh32.33 shares â¼61%, â¼81%, and â¼63% identity, respectively, identified differences in previously defined AAV VP structurally variable regions (VR-1 to VR-IX) which function as receptor attachment, transduction efficiency, and/or antigenic determinants. This structure thus provides a 3D platform for capsid engineering in ongoing efforts to develop AAVrh32.33, as well as other AAV serotypes, for tissue targeted gene-therapy applications with vectors that can evade pre-existing antibody responses against the capsid. These features are required for full clinical realization of the promising AAV gene delivery system.
Assuntos
Capsídeo/ultraestrutura , Dependovirus/química , Técnicas de Transferência de Genes , Vetores Genéticos/química , Modelos Moleculares , Sequência de Aminoácidos , Cristalografia por Raios X , Vetores Genéticos/genética , Vetores Genéticos/ultraestrutura , Humanos , Dados de Sequência Molecular , Conformação ProteicaRESUMO
PARVAX is a genetic vaccine platform based on an adeno-associated vector that has demonstrated to elicit potent, durable, and protective immunity in nonhuman primates (NHPs) after a single dose. Here, we assessed vaccine immunogenicity following a PARVAX prime-boost regimen against SARS-CoV-2. In mice, a low-dose prime followed by a higher-dose boost elicited potent neutralizing antibody responses and distinct cross-reactivity profiles, depending on the antigen used in the booster vaccine. However, the potent neutralizing anti-vector antibody responses developed in mice limited the dose that could be administered as a prime. We further explored the re-administration efficacy in NHPs primed with a SARS-CoV-2 Delta vaccine and boosted with an Omicron BA.1 vaccine at week 15, after the primary response peak antibody levels were reached. The boost elicited an increase in antibodies against several Omicron variants, but no increase was detected in the antibody titers for other variants. The anti-vector responses were low and showed some increased subsequent boosts but generally declined over time. The potent prime vaccination limited the detection of the boosting effect, and therefore, the effect of anti-vector immunity was not fully elucidated. These data show that PARVAX can be effectively re-administered and induce a novel antigenic response.
RESUMO
Activation of T cells to the capsid of adeno-associated virus (AAV) serotype 2 vectors has been implicated in liver toxicity in a recent human gene therapy trial of hemophilia B. To further investigate this kind of toxicity, we evaluated T-cell responses to AAV capsids after intramuscular injection of vectors into mice and nonhuman primates. High levels of T cells specific to capsids of vectors based on AAV2 and a phylogenetically related AAV variant were detected. Vectors from other AAV clades such as AAV8 (ref. 3), however, did not lead to activation of capsid-specific T cells. Through the generation of AAV2-AAV8 hybrids and the creation of site-directed mutations, we mapped the domain that directs the activation of T cells to the RXXR motif on VP3, which was previously shown to confer binding of the virion to heparan sulfate proteoglycan (HSPG). Evaluation of natural and engineered AAV variants showed direct correlations between heparin binding, uptake into human dendritic cells (DCs) and activation of capsid-specific T cells. The role of heparin binding in the activation of CD8(+) T cells may be useful in modulating the immunogenicity of antigens and improving the safety profile of existing AAV vectors for gene therapy.
Assuntos
Capsídeo/metabolismo , Dependovirus/genética , Vetores Genéticos , Heparina/metabolismo , Linfócitos T/metabolismo , Animais , Células CHO , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Cricetinae , Células Dendríticas/metabolismo , Dependovirus/classificação , Dependovirus/metabolismo , Marcadores Genéticos , Vetores Genéticos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Células HeLa , Heparina/farmacologia , Humanos , Interferon gama/análise , Interferon gama/imunologia , Interleucina-4/farmacologia , Cinética , Leucócitos Mononucleares/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína , Sorotipagem , Fatores de TempoRESUMO
Recombinant adeno-associated viruses (rAAVs) are a preferred vector system in clinical gene transfer. A fundamental challenge to formulate and deliver rAAVs as stable and efficacious vaccines is to elucidate interrelationships between the vector's physicochemical properties and biological potency. To this end, we evaluated an rAAV-based coronavirus disease 2019 (COVID-19) vaccine candidate that encodes the Spike antigen (AC3) and is produced by a commercially viable process. First, state-of-the-art analytical techniques were employed to determine key structural attributes of AC3, including primary and higher-order structures, particle size, empty/full capsid ratios, aggregates, and multi-step thermal degradation pathway analysis. Next, several quantitative potency measures for AC3 were implemented, and data were correlated with the physicochemical analyses on thermally stressed and control samples. Results demonstrate links between decreasing AC3 physical stability profiles, in vitro transduction efficiency in a cell-based assay, and, importantly, in vivo immunogenicity in a mouse model. These findings are discussed in the general context of future development of rAAV-based vaccine candidates as well as specifically for the rAAV vaccine application under study.
RESUMO
The adeno-associated viral vector (AAV) provides a safe and efficient gene therapy platform with several approved products that have marked therapeutic impact for patients. However, a major bottleneck in the development and commercialization of AAV remains the efficiency, cost, and scalability of AAV production. Chromatographic methods have the potential to allow purification at increased scales and lower cost but often require optimization specific to each serotype. Here, we demonstrate that the POROS CaptureSelect AAVX affinity resin efficiently captures a panel of 15 divergent AAV serotypes, including the commonly used AAV2, AAV8, AAV9, PHP.B, and Anc80. We also find that AAVX resin can be regenerated repeatedly without loss of efficiency or carry-over contamination. While AAV preps purified with AAVX showed a higher fraction of empty capsids than preps purified using iodixanol ultracentrifugation, the potency of the AAVX purified vectors was comparable with that of iodixanol purified vectors both in vitro and in vivo. Finally, optimization of the purification protocol resulted in a process with an overall efficiency of 65%-80% across all scales and AAV serotypes tested. These data establish AAVX affinity chromatography as a versatile and efficient method for purification of a broad range of AAV serotypes.
RESUMO
Blindness in Bardet-Biedl syndrome (BBS) is caused by dysfunction and loss of photoreceptor cells in the retina. BBS10, mutations of which account for approximately 21% of all BBS cases, encodes a chaperonin protein indispensable for the assembly of the BBSome, a cargo adaptor important for ciliary trafficking. The loss of BBSome function in the eye causes a reduced light sensitivity of photoreceptor cells, photoreceptor ciliary malformation, dysfunctional ciliary trafficking, and photoreceptor cell death. Cone photoreceptors lacking BBS10 have congenitally low electrical function in electroretinography. In this study, we performed gene augmentation therapy by injecting a viral construct subretinally to deliver the coding sequence of the mouse Bbs10 gene to treat retinal degeneration in a BBS10 mouse model. Long-term efficacy was assessed by measuring the electrical functions of the retina over time, imaging of the treated regions to visualize cell survival, conducting visually guided swim assays to measure functional vision, and performing retinal histology. We show that subretinal gene therapy slowed photoreceptor cell death and preserved retinal function in treated eyes. Notably, cone photoreceptors regained their electrical function after gene augmentation. Measurement of functional vision showed that subretinal gene therapy provided a significant benefit in delaying vision loss.
RESUMO
OBJECTIVE: Gene therapy is a promising approach in the treatment of cardiovascular diseases. Preclinical and clinical studies have demonstrated that adeno-associated viral vectors are the most attractive vehicles for gene transfer. However, preexisting immunity, delayed gene expression, and postinfection immune response limit the success of this technology. The aim of this study was to investigate the efficacy of the first synthetic adeno-associated viral lineage clone, Anc80L65, for cardiac gene therapy. METHODS: By combining 2 different reporter approaches by fluorescence with green fluorescent protein and bioluminescence (Firefly luciferase), we compared transduction efficiency of Anc80L65 and adeno-associated virus, serotype 9 in neonatal rat cardiomyocytes ex vivo and rat hearts in vivo after intramyocardial and intracoronary administration. RESULTS: In cardiomyocytes, Anc80L65 provided a green fluorescent protein expression of 28.9% (36.4 ± 3.34 cells/field) at 24 hours and approximately 100% on day 7. In contrast, adeno-associated virus, serotype 9 green fluorescent protein provided minimal green fluorescent protein expression of 5.64% at 24 hours and 11.8% on day 7. After intramyocardial injection, vector expression peaked on day 7 with Anc80L65; however, with adeno-associated virus, serotype 9 the peak expression was during week 6. Administration of Anc80L65 demonstrated significantly more efficient expression of reporter gene than after adeno-associated virus, serotype 9 at 6 weeks (6.81 ± 0.64 log10 gc/100 ng DNA vs 6.49 ± 0.28 log10 gc/100 ng DNA, P < .05). These results were consistent with the amount of genome copy per cell observed in the heart. CONCLUSIONS: Anc80L65 vector allows fast and robust gene transduction compared with adeno-associated virus, serotype 9 vector in cardiac gene therapy. Anc80L65 did not adversely affect cardiac function and caused no inflammatory response or toxicity.
Assuntos
Dependovirus , Vetores Genéticos , Ratos , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Dependovirus/genética , Terapia Genética/métodos , Miócitos Cardíacos/metabolismo , Técnicas de Transferência de Genes , Transdução GenéticaRESUMO
The SARS-CoV-2 pandemic has had a disastrous impact on global health. Although some vaccine candidates have been effective in combating SARS-CoV-2, logistical, economical, and sociological aspects still limit vaccine access globally. Recently, we reported on two room-temperature stable AAV-based COVID-19 vaccines that induced potent and protective immunogenicity following a single injection in murine and primate models. Obesity and old age are associated with increased mortality in COVID-19, as well as reduced immunogenicity and efficacy of vaccines. Here, we investigated the effectiveness of the AAVCOVID vaccine candidates in murine models of obesity and aging. Results demonstrate that obesity did not significantly alter the immunogenicity of either vaccine candidate. In aged mice, vaccine immunogenicity was impaired. These results suggest that AAV-based vaccines may have limitations in older populations and may be equally applicable in obese and non-obese populations.
Assuntos
COVID-19 , Vacinas , Idoso , Envelhecimento , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Modelos Animais de Doenças , Humanos , Camundongos , Obesidade , SARS-CoV-2 , Glicoproteína da Espícula de CoronavírusRESUMO
Adeno-associated virus (AAV) are potent vectors to achieve treatment against hearing loss resulting from genetic defects. However, the effects of delivery routes and the corresponding transduction efficiencies for clinical applications remain elusive. In this study, we screened AAV vectors of three serotypes (AAV 8 and 9 and Anc80L65) into the inner ears of adult normal guinea pigs through trans-stapes (oval window) and trans-round window delivery routes in vivo. Trans-stapes route is akin to stape surgeries in humans. Then, auditory brainstem response (ABR) measurements were conducted to evaluate postoperative hearing, and inner ear tissues were harvested for transduction efficiency analysis. Results showed that AAV8 targeted partial inner hair cells (IHCs) in cochlear basal turn; AAV9 targeted IHCs in cochlear basal and second turn, also a part of vestibular hair cells (VHCs). In contrast, Anc80L65 contributed to green fluorescent proteins (GFP) signals of 80 - 95% IHCs and 67 - 91% outer hair cells (OHCs), as well as 69% VHCs through the trans-round window route, with 15-20 decibel (dB) ABR threshold shifts. And, through the trans-stapes (oval window) route, there were 71 - 90% IHCs and 42 - 81% OHCs, along with 64% VHCs demonstrating GFP positive, and the ABR threshold shifts were within 10 dB. This study revealed AAV could be efficiently delivered into mammalian inner ear cells in vivo through the trans-stapes (oval window) route with postoperative hearing preservation, and both delivery routes showed promise of virus-based clinical translation of hearing impairment treatment.