Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(33): 22049-22061, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39114945

RESUMO

Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 µmol cm-3) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.

2.
Chemphyschem ; 22(12): 1150, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34139098

RESUMO

The front cover artwork front cover artwork is provided by NMRCoRe, the Flemish NMR/X-Ray platform for Convergence Research and was designed by Ir. Ewoud Vaneeckhaute and Dr. Eric Breynaert. The image shows the reciprocity between parahydrogen, deuterated ammonia and iridium allowing for hyperpolarized 2D NMR via long-term availability of longitudinal spin order. Read the full text of the Article at 10.1002/cphc.202100079.

3.
Chemphyschem ; 22(12): 1170-1177, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33851495

RESUMO

Symmetry breaking of parahydrogen using iridium catalysts converts singlet spin order into observable hyperpolarization. In this contribution, iridium catalysts are designed to exhibit asymmetry in their hydrides, regulated by in situ generation of deuterated ammonia governed by ammonium buffers. The concentrations of ammonia (N) and pyridine (P) provide a handle to generate a variety of stereo-chemically asymmetric N-heterocyclic carbene iridium complexes, ligating either [3xP], [2xP;N], [P;2xN] or [3xN] in an octahedral SABRE type configuration. The non-equivalent hydride positions, in correspondence with the ammonium buffer solutions, enables to extend singlet-triplet or S⟩→T0⟩ mixing at high magnetic field and experimentally induce prolonged generation of non-equilibrium longitudinal two-spin order. This long-lasting magnetization can be exploited in hyperpolarized 2D-OPSY-COSY experiments providing direct structural information on the catalyst using a single contact with parahydrogen. Separately, field cycling revealed hyperpolarization properties in low-field conditions. Controlling catalyst stereochemistry by introducing small and deuterated ligands, such as deuterated ammonia, simplifies the spin-system. This is shown to unify experimental and theoretically derived field-sweep experiments for four-spin systems.

4.
Adv Sci (Weinh) ; 10(23): e2207112, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37211713

RESUMO

Amino acids (AAs) and ammonia are metabolic markers essential for nitrogen metabolism and cell regulation in both plants and humans. NMR provides interesting opportunities to investigate these metabolic pathways, yet lacks sensitivity, especially in case of 15 N. In this study, spin order embedded in p-H2 is used to produce on-demand reversible hyperpolarization in 15 N of pristine alanine and ammonia under ambient protic conditions directly in the NMR spectrometer. This is made possible by designing a mixed-ligand Ir-catalyst, selectively ligating the amino group of AA by exploiting ammonia as a strongly competitive co-ligand and preventing deactivation of Ir by bidentate ligation of AA. The stereoisomerism of the catalyst complexes is determined by hydride fingerprinting using 1 H/D scrambling of the associated N-functional groups on the catalyst (i.e., isotopological fingerprinting), and unravelled by 2D-ZQ-NMR. Monitoring the transfer of spin order from p-H2 to 15 N nuclei of ligated and free alanine and ammonia targets using SABRE-INEPT with variable exchange delays pinpoints the monodentate elucidated catalyst complexes to be most SABRE active. Also RF-spin locking (SABRE-SLIC) enables transfer of hyperpolarization to 15 N. The presented high-field approach can be a valuable alternative to SABRE-SHEATH techniques since the obtained catalytic insights (stereochemistry and kinetics) will remain valid at ultra-low magnetic fields.

5.
J Phys Chem Lett ; 13(15): 3516-3522, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35420032

RESUMO

Hyperpolarization using signal amplification by reversible exchange (SABRE) relies on target molecules and parahydrogen coordinating to a transition metal catalyst. Identification of this coordinated state becomes increasingly important, especially since bio-relevant targets such as pyruvate and amino acids exhibiting multiple binding sites are becoming compatible with SABRE. In this report, we present a fingerprinting method to discriminate and identify ligand binding sites without requiring the presence of a sensitive or isotope-labeled heteroatom. Adding a small concentration of protons to a deuterated medium, spontaneous 1H/D scrambling of exchangeable protons encodes the ligands each with an isotopological fingerprint. By use of rapid 2D zero quantum NMR, the binding sites are decoded from the hydrides in less than a minute. The new methodology is explained and demonstrated on Ir mixed complexes with pyridine, benzylamine, and ammonia as common N-functional ligands.


Assuntos
Imageamento por Ressonância Magnética , Prótons , Catálise , Ligantes , Espectroscopia de Ressonância Magnética
6.
J Agric Food Chem ; 69(13): 3912-3922, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33780246

RESUMO

The structural heterogeneity of water-extractable arabinoxylan (WE-AX) impacts wheat flour functionality. 1H diffusion-ordered (DOSY) nuclear magnetic resonance (NMR) spectroscopy revealed structural heterogeneity within WE-AX fractions obtained via graded ethanol precipitation. Combination with high-resolution 1H-1H correlation NMR spectroscopy (COSY) allowed identifying the relationship between the xylose substitution patterns and diffusion properties of the subpopulations. WE-AX fractions contained distinct subpopulations with different diffusion rates. WE-AX subpopulations with a high self-diffusivity contained high levels of monosubstituted xylose. In contrast, those with a low self-diffusivity were rich in disubstituted xylose, suggesting that disubstitution mainly occurs in WE-AX molecules with large hydrodynamic volumes. In general, WE-AX fractions precipitating at higher and lower ethanol concentrations had higher and lower self-diffusivity and more and less complex substitution patterns. Although 1H DOSY NMR, as performed in this study, was valuable for elucidating WE-AX structural heterogeneity, physical limitations arose when studying WE-AX populations with high molecular weight dispersions.


Assuntos
Farinha , Triticum , Farinha/análise , Espectroscopia de Ressonância Magnética , Água , Xilanos
7.
J Agric Food Chem ; 68(10): 3250-3259, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32045528

RESUMO

Arabinoxylan oligosaccharides (AXOS) are a complex mixture of cereal derived, water-soluble prebiotics, obtained by enzymatic hydrolysis of arabinoxylan, a group of dietary fibers exerting numerous nutritional and health-beneficial effects. Such complex biomolecular mixtures are notoriously difficult to characterize without initial physical fractionation. Here we present the in situ analysis of AXOS using a variety of state-of-the-art sensitivity-enhanced 13C-DOSY methods, enabling virtual separation and identification of the components. Three dimensional correlation plots displaying 13C diffusivity (DOSY: Diffusion Ordered SpectroscopY), relaxation parameters (TOSY: raTe of relaxation Ordered SpectrscopY), and chemical shift offer a unique way to elucidate the composition of mixtures. We have demonstrated this multifaceted 13C probed correlation strategy in standard mixtures of aliphatic and aromatic compounds, before implementing it on AXOS. These 3D-DOSY-TOSY plots in combination with 2D-NMR correlation experiments offer unprecedented clarity for assigning chemical functions, molecular size distribution, and dynamics of oligosaccharide mixtures.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Oligossacarídeos/química , Prebióticos/análise , Análise Espectral/métodos , Hidrólise , Tamanho da Partícula , Xilanos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA