RESUMO
Despite tremendous diversity, Asian Americans in STEM are grouped and viewed as a homogeneous monolith, facing stereotypes and disparities. We propose solutions that include disaggregating the Asian American grouping and recognizing the diverse individual ethnic subgroups that comprise Americans of Asian ancestry to implement change within the STEM field.
Assuntos
Asiático , Humanos , Estados UnidosRESUMO
Mindfulness has become popular in recent decades as a tool for psychological well-being. However, mindfulness has yet to find a solid footing as a routine practice within the Science, Technology, Engineering, and Mathematics (STEM) field. Here, we discuss the design of an introductory mindfulness program that provides the STEM community with a broad overview of various mindfulness methods. We also discuss delivery implementation methods and other considerations when designing mindfulness programming. This article provides resources for those interested in incorporating mindfulness into the STEM field, especially within the university setting.
Assuntos
Engenharia , Atenção Plena , Atenção Plena/métodos , Humanos , Universidades , Matemática , Tecnologia , CiênciaRESUMO
Since 1901, the Nobel Prize in Physiology and Medicine has been awarded to numerous individuals for their outstanding contributions. This article presents a comprehensive analysis of the Nobel Prize recipients, focusing on gender, race, and nationality. We observe that an alarming disparity emerges when we examine the underrepresentation of Black scientists among Nobel laureates. Furthermore, trends in nationalities show how Americans make up the majority of Nobel Prize winners, while there is a noticeable lack of gender and racial minority winners of the Nobel Prize in Physiology and Medicine. Together, this highlights the importance of diversity and inclusion in scientific achievement. We offer suggestions and techniques, including funding opportunities and expanding nominators, to improve the gender, racial, and geographical diversity of Nobel Prizes.
Assuntos
Prêmio Nobel , Fisiologia , Humanos , Masculino , Feminino , Grupos Raciais , Fatores SexuaisRESUMO
The sorting and assembly machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.
Assuntos
Fibras Musculares Esqueléticas , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Animais , Humanos , Camundongos , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Camundongos Knockout , Autofagia , Proteínas do Complexo de Importação de Proteína Precursora MitocondrialRESUMO
Identity matters in science, technology, engineering, mathematics, and medicine (STEMM) because it can affect an individual's long-term sense of belonging, which may in turn affect their persistence in STEMM. Early K-12 science classes often teach students about the foundational discoveries of the field, which have been predominately made, or at least published, by White men. This homogeneity can leave underrepresented individuals in STEMM feeling isolated, and underrepresented K-12 students may feel as though they cannot enter STEMM fields. This study aimed to examine these feelings of inclusivity in STEMM through an interactive workshop that asked middle schoolers to identify scientists from images of individuals with various racial and gender identities. We found that a plurality of students had a positive experience discussing diversity in science and recognizing underrepresented individuals as scientists.NEW & NOTEWORTHY We observed positive sentiments from middle school students following a workshop that showcased diversity in science. This workshop uniquely encourages students to recognize that physiologists and scientists today are much more diverse than textbooks typically demonstrate and can be adapted for middle schoolers, high schoolers, and college students.
Assuntos
Ciência , Masculino , Humanos , Ciência/educação , Engenharia/educação , Tecnologia/educação , Estudantes , MatemáticaRESUMO
Physiology is an important field for students to gain a better understanding of biological mechanisms. Yet, many students often find it difficult to learn from lectures, resulting in poor retention. Here, we utilize a learning workshop model to teach students at different levels ranging from middle school to undergraduate. We specifically designed a workshop to teach students about mitochondria-endoplasmic reticulum contact (MERC) sites. The workshop was implemented for middle school students in a laboratory setting that incorporated a pretest to gauge prior knowledge, instructional time, hands-on activities, interactive learning from experts, and a posttest. We observed that the students remained engaged during the session of interactive methods, teamed with their peers to complete tasks, and delighted in the experience. Implications for the design of future physiological workshops are further offered.NEW & NOTEWORTHY This manuscript offers a design for a workshop that utilizes blended learning to engage middle school, high school, and undergraduate students while teaching them about mitochondria-endoplasmic reticulum contact sites.
Assuntos
Retículo Endoplasmático , Mitocôndrias , Fisiologia , Humanos , Mitocôndrias/fisiologia , Mitocôndrias/metabolismo , Retículo Endoplasmático/fisiologia , Fisiologia/educação , Adolescente , Aprendizagem Baseada em Problemas/métodos , Estudantes , Feminino , Masculino , Compreensão , Aprendizagem/fisiologia , Membranas Associadas à MitocôndriaRESUMO
There remains a clear deficiency in recruiting middle school students in science, technology, engineering, mathematics, and medicine fields, especially for those students entering physiology from underrepresented backgrounds. A large part of this may be arising from a disconnect between how science is typically practiced at a collegiate and K-12 level. Here, we have envisioned mitochondria and their diverse subcellular structures as an involver for middle school students. We present the framework for a workshop that familiarizes students with mitochondria, employing three-dimensional visual-spatial learning and real-time critical thinking and hypothesis forming. This workshop had the goal of familiarizing middle school students with the unique challenges the field currently faces and better understanding the actuality of being a scientist through critical analysis including hypothesis forming. Findings show that middle school students responded positively to the program and felt as though they had a better understanding of mitochondria. Future implications for hands-on programs to involve underrepresented students in science are discussed, as well as potential considerations to adapt it for high school and undergraduate students.NEW & NOTEWORTHY Here we employ a workshop that utilizes blended and tactile learning to teach middle schoolers about mitochondrial structure. By creating an approachable and fun workshop that can be utilized for middle school students, we seek to encourage them to join a career in physiology.
Assuntos
Engenharia , Estudantes , Humanos , Engenharia/educação , Tecnologia/educação , Cognição , MitocôndriasRESUMO
Autistic adults (AA) have the highest unemployment rate relative to other groups, regardless of disability status. Systemic changes are needed to acquire and retain AA in science, technology, engineering, mathematics, and medicine (STEMM). Here, we discuss the unique challenges AA face in STEMM and possible solutions to overcome them.
RESUMO
Disability remains an underacknowledged and underdiscussed topic in science, technology, engineering, mathematics, and medicine (STEMM). Social stigma and fear of negative outcomes have resulted in a consistent lack of disclosure. Disabilities cause social and professional difficulties for those that have them. While some faculty can be allies, past literature shows that steps must be taken to make disabilities visible in STEMM at both student and faculty levels. Here, we offer suggestions to better support faculty and students in enhancing the outcomes of individuals who have invisible disabilities. Critically, techniques such as abolishing stigma, universal learning, and better mentoring may improve the challenges faced by those who self-identify as an individual with a disability.
Assuntos
Engenharia , Tecnologia , Humanos , Engenharia/educação , Tecnologia/educação , Aprendizagem , Estudantes , DocentesRESUMO
Choosing a mentor requires a certain level of introspection for both the mentor and the mentee. The dynamics of mentorship may change depending on the academic status of the mentee. Regardless, mentors should help their trainees grow both academically and professionally. The success of an individual in the fields of science, technology, engineering, mathematics, and medicine (STEMM) depends on more than intellectual capacity; a holistic view encompassing all factors that contribute to scientific achievement is all-important. Specifically, one new method scientists can adopt is quotients, which are scales and techniques that can be used to measure aptitude in a specific area. In this paper, we focus on these factors and how to grow one's adversity quotient (AQ), social quotient (SQ), and personal growth initiative scale (PGIS). We also look at how mentors can better understand the biases of their trainees. In addressing this, mentors can help trainees become more visible and encourage other trainees to become allies through reducing biases.
Assuntos
Mentores , Estudantes , HumanosRESUMO
Underrepresented faculty have higher burnout rates and lower grant attainment rates when compared with their non-minority counterparts. Many in science, technology, engineering, mathematics, and medicine (STEMM) disciplines, including underrepresented individuals, often have difficulty dedicating time to the writing process, with trainees often being relegated to laboratory tasks in their training years, resulting in a lack of practice in academic writing. Notably, past studies have shown that grant attainment rates of underrepresented individuals are lower than their majority counterparts. Here, we sought to consider a mechanism targeted to underrepresented individuals, although applicable to everyone, to help overcome traditional barriers to writing in STEMM. The authors have hosted a writing accountability group (WAG) that uniquely provides a format focused on physical activity and different forms of writing to strengthen both career development and award/funding attainment. Our objectives were to evaluate this unique format, thus creating a resource for individuals and institutions to learn about WAGs and expand upon the framework to formulate their own WAG. To do this, we performed a small pilot study (n = 21) to investigate attitudes towards the WAG. We present the results of a survey conducted among underrepresented WAG participants, which spanned different career stages and was highly diverse demographically. Our results show that following attendance of our WAG, individuals did not note a significant change in scales pertaining to John Henryism (high-effort coping), resilience, sense of belonging, or grit. However, significant increases were noted in the self-perceived ability to handle stress, confidence in applying for awards, appreciation for mentoring, and satisfaction of WAGs. Taken together, the results of this study suggest that our unique WAG format can have some positive results as a career and writing development opportunity and may be able to support underrepresented individuals in attaining funding at higher education institutions.
RESUMO
Maximizing Access to Research Careers (MARC) programs are aimed to increase diversity in science, technology, engineering, math, and medicine (STEMM) fields. However, limited programs and eligibility requirements limit the students who may apply to similar programs. At Winston-Salem State University, we piloted a series of workshops, collectively termed Project Strengthen, to emulate some of the key aspects of MARC programs. Following the workshop, Project Strengthen students showed a significant increase in their understanding of essential educational development skills, such as writing personal statements, applying to graduate school, studying for the GRE, and seeking summer internships. This suggests Project Strengthen may be a potential lower cost comparable option than MARC to make up for current deficiencies in preparedness for graduate school. We also provide educational materials from Project Strengthen, including a clear framework for this seminar series, six ready-made PowerPoints to share with trainees that have been demonstrated to be effective.
RESUMO
The Sorting and Assembly Machinery (SAM) Complex is responsible for assembling ß-barrel proteins in the mitochondrial membrane. Comprising three subunits, Sam35, Sam37, and Sam50, the SAM complex connects the inner and outer mitochondrial membranes by interacting with the mitochondrial contact site and cristae organizing system (MICOS) complex. Sam50, in particular, stabilizes the mitochondrial intermembrane space bridging (MIB) complex, which is crucial for protein transport, respiratory chain complex assembly, and regulation of cristae integrity. While the role of Sam50 in mitochondrial structure and metabolism in skeletal muscle remains unclear, this study aims to investigate its impact. Serial block-face-scanning electron microscopy (SBF-SEM) and computer-assisted 3D renderings were employed to compare mitochondrial structure and networking in Sam50-deficient myotubes from mice and humans with wild-type (WT) myotubes. Furthermore, autophagosome 3D structure was assessed in human myotubes. Mitochondrial metabolic phenotypes were assessed using Gas Chromatography-Mass Spectrometry-based metabolomics to explore differential changes in WT and Sam50-deficient myotubes. The results revealed increased mitochondrial fragmentation and autophagosome formation in Sam50-deficient myotubes compared to controls. Metabolomic analysis indicated elevated metabolism of propanoate and several amino acids, including ß-Alanine, phenylalanine, and tyrosine, along with increased amino acid and fatty acid metabolism in Sam50-deficient myotubes. Furthermore, impairment of oxidative capacity was observed upon Sam50 ablation in both murine and human myotubes, as measured with the XF24 Seahorse Analyzer. Collectively, these findings support the critical role of Sam50 in establishing and maintaining mitochondrial integrity, cristae structure, and mitochondrial metabolism. By elucidating the impact of Sam50-deficiency, this study enhances our understanding of mitochondrial function in skeletal muscle.