Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769413

RESUMO

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/metabolismo , Dissulfetos/metabolismo , Compostos Macrocíclicos/metabolismo , Animais , Células Cultivadas , Cristalografia , Cistinil Aminopeptidase/análise , Espinhas Dendríticas/química , Dissulfetos/farmacologia , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Células HEK293 , Humanos , Compostos Macrocíclicos/farmacologia , Gravidez , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley
2.
Front Mol Biosci ; 8: 625274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869280

RESUMO

Inhibition of the insulin-regulated aminopeptidase (IRAP) improves memory and cognition in animal models. The enzyme has recently been crystallized and several series of inhibitors reported. We herein focused on one series of benzopyran-based inhibitors of IRAP known as the HFI series, with unresolved binding mode to IRAP, and developed a robust computational model to explain the structure-activity relationship (SAR) and potentially guide their further optimization. The binding model here proposed places the benzopyran ring in the catalytic binding site, coordinating the Zn2+ ion through the oxygen in position 3, in contrast to previous hypothesis. The whole series of HFI compounds was then systematically simulated, starting from this binding mode, using molecular dynamics and binding affinity estimated with the linear interaction energy (LIE) method. The agreement with experimental affinities supports the binding mode proposed, which was further challenged by rigorous free energy perturbation (FEP) calculations. Here, we found excellent correlation between experimental and calculated binding affinity differences, both between selected compound pairs and also for recently reported experimental data concerning the site directed mutagenesis of residue Phe544. The computationally derived structure-activity relationship of the HFI series and the understanding of the involvement of Phe544 in the binding of this scaffold provide valuable information for further lead optimization of novel IRAP inhibitors.

3.
RSC Med Chem ; 11(2): 234-244, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33479630

RESUMO

Macrocyclic analogues of the linear hexapeptide, angiotensin IV (AngIV) have proved to be potent inhibitors of insulin-regulated aminopeptidase (IRAP, oxytocinase, EC 3.4.11.3). Along with higher affinity, macrocycles may also offer better metabolic stability, membrane permeability and selectivity, however predicting the outcome of particular cycle modifications is challenging. Here we describe the development of a series of macrocyclic IRAP inhibitors with either disulphide, olefin metathesis or lactam bridges and variations of ring size and other functionality. The binding mode of these compounds is proposed based on molecular dynamics analysis. Estimation of binding affinities (ΔG) and relative binding free energies (ΔΔG) with the linear interaction energy (LIE) method and free energy perturbation (FEP) method showed good general agreement with the observed inhibitory potency. Experimental and calculated data highlight the cumulative importance of an intact N-terminal peptide, the specific nature of the macrocycle, the phenolic oxygen and the C-terminal functionality.

4.
ChemistryOpen ; 9(3): 325-337, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154052

RESUMO

Insulin-regulated aminopeptidase (IRAP) is a new potential macromolecular target for drugs aimed for treatment of cognitive disorders. Inhibition of IRAP by angiotensin IV (Ang IV) improves the memory and learning in rats. The majority of the known IRAP inhibitors are peptidic in character and suffer from poor pharmacokinetic properties. Herein, we present a series of small non-peptide IRAP inhibitors derived from a spiro-oxindole dihydroquinazolinone screening hit (pIC50 5.8). The compounds were synthesized either by a simple microwave (MW)-promoted three-component reaction, or by a two-step one-pot procedure. For decoration of the oxindole ring system, rapid MW-assisted Suzuki-Miyaura cross-couplings (1 min) were performed. A small improvement of potency (pIC50 6.6 for the most potent compound) and an increased solubility could be achieved. As deduced from computational modelling and MD simulations it is proposed that the S-configuration of the spiro-oxindole dihydroquinazolinones accounts for the inhibition of IRAP.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Oxindóis/síntese química , Inibidores de Proteases/síntese química , Quinazolinonas/síntese química , Animais , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Humanos , Modelos Moleculares , Oxindóis/metabolismo , Inibidores de Proteases/metabolismo , Ligação Proteica , Conformação Proteica , Quinazolinonas/metabolismo , Ratos , Receptores de Angiotensina/metabolismo , Solubilidade , Relação Estrutura-Atividade
5.
ACS Omega ; 3(4): 4509-4521, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023895

RESUMO

The insulin-regulated aminopeptidase (IRAP) is a membrane-bound zinc metallopeptidase with many important regulatory functions. It has been demonstrated that inhibition of IRAP by angiotensin IV (Ang IV) and other peptides, as well as more druglike inhibitors, improves cognition in several rodent models. We recently reported a series of aryl sulfonamides as small-molecule IRAP inhibitors and a promising scaffold for pharmacological intervention. We have now expanded with a number of derivatives, report their stability in liver microsomes, and characterize the activity of the whole series in a new assay performed on recombinant human IRAP. Several compounds, such as the new fluorinated derivative 29, present submicromolar affinity and high metabolic stability. Starting from the two binding modes previously proposed for the sulfonamide scaffold, we systematically performed molecular dynamics simulations and binding affinity estimation with the linear interaction energy method for the full compound series. The significant agreement with experimental affinities suggests one of the binding modes, which was further confirmed by the excellent correlation for binding affinity differences between the selected pair of compounds obtained by rigorous free energy perturbation calculations. The new experimental data and the computationally derived structure-activity relationship of the sulfonamide series provide valuable information for further lead optimization of novel IRAP inhibitors.

6.
ACS Chem Neurosci ; 7(10): 1383-1392, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27501164

RESUMO

The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of IRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug-like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors. A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.


Assuntos
Cistinil Aminopeptidase/antagonistas & inibidores , Espinhas Dendríticas/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Sulfonamidas/farmacologia , Animais , Antígenos CD13/metabolismo , Células Cultivadas , Técnicas de Cocultura , Cistinil Aminopeptidase/metabolismo , Espinhas Dendríticas/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/síntese química , Epóxido Hidrolases/genética , Epóxido Hidrolases/metabolismo , Células HEK293 , Hipocampo/efeitos dos fármacos , Hipocampo/enzimologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Ligação Proteica , Ratos Sprague-Dawley , Proteínas Recombinantes/genética , Sulfonamidas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA