Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(46): e2200822119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343269

RESUMO

Epilepsy is a disorder characterized by paroxysmal transitions between multistable states. Dynamical systems have been useful for modeling the paroxysmal nature of seizures. At the same time, intracranial electroencephalography (EEG) recordings have recently discovered that an electrographic measure of epileptogenicity, interictal epileptiform activity, exhibits cycling patterns ranging from ultradian to multidien rhythmicity, with seizures phase-locked to specific phases of these latent cycles. However, many mechanistic questions about seizure cycles remain unanswered. Here, we provide a principled approach to recast the modeling of seizure chronotypes within a statistical dynamical systems framework by developing a Bayesian switching linear dynamical system (SLDS) with variable selection to estimate latent seizure cycles. We propose a Markov chain Monte Carlo algorithm that employs particle Gibbs with ancestral sampling to estimate latent cycles in epilepsy and apply unsupervised learning on spectral features of latent cycles to uncover clusters in cycling tendency. We analyze the largest database of patient-reported seizures in the world to comprehensively characterize multidien cycling patterns among 1,012 people with epilepsy, spanning from infancy to older adulthood. Our work advances knowledge of cycling in epilepsy by investigating how multidien seizure cycles vary in people with epilepsy, while demonstrating an application of an SLDS to frame seizure cycling within a nonlinear dynamical systems framework. It also lays the groundwork for future studies to pursue data-driven hypothesis generation regarding the mechanistic drivers of seizure cycles.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Idoso , Teorema de Bayes , Convulsões , Dinâmica não Linear
2.
Hum Brain Mapp ; 45(10): e26763, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943369

RESUMO

In this article, we develop an analytical approach for estimating brain connectivity networks that accounts for subject heterogeneity. More specifically, we consider a novel extension of a multi-subject Bayesian vector autoregressive model that estimates group-specific directed brain connectivity networks and accounts for the effects of covariates on the network edges. We adopt a flexible approach, allowing for (possibly) nonlinear effects of the covariates on edge strength via a novel Bayesian nonparametric prior that employs a weighted mixture of Gaussian processes. For posterior inference, we achieve computational scalability by implementing a variational Bayes scheme. Our approach enables simultaneous estimation of group-specific networks and selection of relevant covariate effects. We show improved performance over competing two-stage approaches on simulated data. We apply our method on resting-state functional magnetic resonance imaging data from children with a history of traumatic brain injury (TBI) and healthy controls to estimate the effects of age and sex on the group-level connectivities. Our results highlight differences in the distribution of parent nodes. They also suggest alteration in the relation of age, with peak edge strength in children with TBI, and differences in effective connectivity strength between males and females.


Assuntos
Teorema de Bayes , Lesões Encefálicas Traumáticas , Conectoma , Imageamento por Ressonância Magnética , Humanos , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/fisiopatologia , Feminino , Masculino , Criança , Adolescente , Conectoma/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Modelos Neurológicos
3.
Biometrics ; 79(2): 629-641, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-34997758

RESUMO

Stationary points embedded in the derivatives are often critical for a model to be interpretable and may be considered as key features of interest in many applications. We propose a semiparametric Bayesian model to efficiently infer the locations of stationary points of a nonparametric function, which also produces an estimate of the function. We use Gaussian processes as a flexible prior for the underlying function and impose derivative constraints to control the function's shape via conditioning. We develop an inferential strategy that intentionally restricts estimation to the case of at least one stationary point, bypassing possible mis-specifications in the number of stationary points and avoiding the varying dimension problem that often brings in computational complexity. We illustrate the proposed methods using simulations and then apply the method to the estimation of event-related potentials derived from electroencephalography (EEG) signals. We show how the proposed method automatically identifies characteristic components and their latencies at the individual level, which avoids the excessive averaging across subjects that is routinely done in the field to obtain smooth curves. By applying this approach to EEG data collected from younger and older adults during a speech perception task, we are able to demonstrate how the time course of speech perception processes changes with age.


Assuntos
Eletroencefalografia , Potenciais Evocados , Idoso , Humanos , Teorema de Bayes , Distribuição Normal , Adulto Jovem
4.
Stat Med ; 42(17): 2999-3015, 2023 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-37173609

RESUMO

Analyzing multivariate count data generated by high-throughput sequencing technology in microbiome research studies is challenging due to the high-dimensional and compositional structure of the data and overdispersion. In practice, researchers are often interested in investigating how the microbiome may mediate the relation between an assigned treatment and an observed phenotypic response. Existing approaches designed for compositional mediation analysis are unable to simultaneously determine the presence of direct effects, relative indirect effects, and overall indirect effects, while quantifying their uncertainty. We propose a formulation of a Bayesian joint model for compositional data that allows for the identification, estimation, and uncertainty quantification of various causal estimands in high-dimensional mediation analysis. We conduct simulation studies and compare our method's mediation effects selection performance with existing methods. Finally, we apply our method to a benchmark data set investigating the sub-therapeutic antibiotic treatment effect on body weight in early-life mice.


Assuntos
Microbiota , Modelos Estatísticos , Animais , Camundongos , Teorema de Bayes , Simulação por Computador , Causalidade
5.
Eur J Neurosci ; 55(1): 318-336, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34841600

RESUMO

Children who experience a traumatic brain injury (TBI) are at elevated risk for a range of negative cognitive and neuropsychological outcomes. Identifying which children are at greatest risk for negative outcomes can be difficult due to the heterogeneity of TBI. To address this barrier, the current study applied a novel method of characterizing brain connectivity networks, Bayesian multi-subject vector autoregressive modelling (BVAR-connect), which used white matter integrity as priors to evaluate effective connectivity-the time-dependent relationship in functional magnetic resonance imaging (fMRI) activity between two brain regions-within the default mode network (DMN). In a prospective longitudinal study, children ages 8-15 years with mild to severe TBI underwent diffusion tensor imaging and resting state fMRI 7 weeks after injury; post-concussion and anxiety symptoms were assessed 7 months after injury. The goals of this study were to (1) characterize differences in positive effective connectivity of resting-state DMN circuitry between healthy controls and children with TBI, (2) determine if severity of TBI was associated with differences in DMN connectivity and (3) evaluate whether patterns of DMN effective connectivity predicted persistent post-concussion symptoms and anxiety. Healthy controls had unique positive connectivity that mostly emerged from the inferior temporal lobes. In contrast, children with TBI had unique effective connectivity among orbitofrontal and parietal regions. These positive orbitofrontal-parietal DMN effective connectivity patterns also differed by TBI severity and were associated with persisting behavioural outcomes. Effective connectivity may be a sensitive neuroimaging marker of TBI severity as well as a predictor of chronic post-concussion symptoms and anxiety.


Assuntos
Lesões Encefálicas Traumáticas , Síndrome Pós-Concussão , Adolescente , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Mapeamento Encefálico/métodos , Criança , Rede de Modo Padrão , Imagem de Tensor de Difusão , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Síndrome Pós-Concussão/complicações , Síndrome Pós-Concussão/diagnóstico por imagem , Síndrome Pós-Concussão/patologia , Estudos Prospectivos
6.
Epilepsia ; 63(12): 3156-3167, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36149301

RESUMO

OBJECTIVE: Epilepsy monitoring unit (EMU) admissions are critical for presurgical evaluation of drug-resistant epilepsy but may be nondiagnostic if an insufficient number of seizures are recorded. Seizure forecasting algorithms have shown promise for estimating the likelihood of seizures as a binary event in individual patients, but methods to predict how many seizures will occur remain elusive. Such methods could increase the diagnostic yield of EMU admissions and help patients mitigate seizure-related morbidity. Here, we evaluated the performance of a state-space method that uses prior seizure count data to predict future counts. METHODS: A Bayesian negative-binomial dynamic linear model (DLM) was developed to forecast daily electrographic seizure counts in 19 patients implanted with a responsive neurostimulation (RNS) device. Holdout validation was used to evaluate performance in predicting the number of electrographic seizures for forecast horizons ranging 1-7 days ahead. RESULTS: One-day-ahead prediction of the number of electrographic seizures using a negative-binomial DLM resulted in improvement over chance in 73.1% of time segments compared to a random chance forecaster and remained >50% for forecast horizons of up to 7 days. Superior performance (mean error = .99) was obtained in predicting the number of electrographic seizures in the next day compared to three traditional methods for count forecasting (integer-valued generalized autoregressive conditional heteroskedasticity model or INGARCH, 1.10; Croston, 1.06; generalized linear autoregressive moving average model or GLARMA, 2.00). Number of electrographic seizures in the preceding day and laterality of electrographic pattern detections had highest predictive value, with greater number of electrographic seizures and RNS magnet swipes in the preceding day associated with a higher number of electrographic seizures the next day. SIGNIFICANCE: This study demonstrates that DLMs can predict the number of electrographic seizures a patient will experience days in advance with above chance accuracy. This study represents an important step toward the translation of seizure forecasting methods into the optimization of EMU admissions.


Assuntos
Epilepsia , Humanos , Teorema de Bayes , Epilepsia/diagnóstico , Convulsões/diagnóstico , Técnicas e Procedimentos Diagnósticos
7.
Stat Methods Appt ; 31(2): 197-225, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673326

RESUMO

Graphical models are powerful tools that are regularly used to investigate complex dependence structures in high-throughput biomedical datasets. They allow for holistic, systems-level view of the various biological processes, for intuitive and rigorous understanding and interpretations. In the context of large networks, Bayesian approaches are particularly suitable because it encourages sparsity of the graphs, incorporate prior information, and most importantly account for uncertainty in the graph structure. These features are particularly important in applications with limited sample size, including genomics and imaging studies. In this paper, we review several recently developed techniques for the analysis of large networks under non-standard settings, including but not limited to, multiple graphs for data observed from multiple related subgroups, graphical regression approaches used for the analysis of networks that change with covariates, and other complex sampling and structural settings. We also illustrate the practical utility of some of these methods using examples in cancer genomics and neuroimaging.

8.
Biostatistics ; 21(3): 561-576, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30590505

RESUMO

In this article, we develop a graphical modeling framework for the inference of networks across multiple sample groups and data types. In medical studies, this setting arises whenever a set of subjects, which may be heterogeneous due to differing disease stage or subtype, is profiled across multiple platforms, such as metabolomics, proteomics, or transcriptomics data. Our proposed Bayesian hierarchical model first links the network structures within each platform using a Markov random field prior to relate edge selection across sample groups, and then links the network similarity parameters across platforms. This enables joint estimation in a flexible manner, as we make no assumptions on the directionality of influence across the data types or the extent of network similarity across the sample groups and platforms. In addition, our model formulation allows the number of variables and number of subjects to differ across the data types, and only requires that we have data for the same set of groups. We illustrate the proposed approach through both simulation studies and an application to gene expression levels and metabolite abundances on subjects with varying severity levels of chronic obstructive pulmonary disease. Bayesian inference; Chronic obstructive pulmonary disease (COPD); Data integration; Gaussian graphical model; Markov random field prior; Spike and slab prior.


Assuntos
Pesquisa Biomédica/métodos , Bioestatística/métodos , Interpretação Estatística de Dados , Modelos Estatísticos , Teorema de Bayes , Simulação por Computador , Conjuntos de Dados como Assunto , Expressão Gênica/fisiologia , Humanos , Cadeias de Markov , Metaboloma/fisiologia , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Índice de Gravidade de Doença
9.
Biometrics ; 77(2): 622-633, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32535900

RESUMO

The simultaneous testing of multiple hypotheses is common to the analysis of high-dimensional data sets. The two-group model, first proposed by Efron, identifies significant comparisons by allocating observations to a mixture of an empirical null and an alternative distribution. In the Bayesian nonparametrics literature, many approaches have suggested using mixtures of Dirichlet Processes in the two-group model framework. Here, we investigate employing mixtures of two-parameter Poisson-Dirichlet Processes instead, and show how they provide a more flexible and effective tool for large-scale hypothesis testing. Our model further employs nonlocal prior densities to allow separation between the two mixture components. We obtain a closed-form expression for the exchangeable partition probability function of the two-group model, which leads to a straightforward Markov Chain Monte Carlo implementation. We compare the performance of our method for large-scale inference in a simulation study and illustrate its use on both a prostate cancer data set and a case-control microbiome study of the gastrointestinal tracts in children from underdeveloped countries who have been recently diagnosed with moderate-to-severe diarrhea.


Assuntos
Microbiota , Teorema de Bayes , Criança , Simulação por Computador , Humanos , Cadeias de Markov , Método de Monte Carlo
10.
BMC Bioinformatics ; 21(1): 301, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32660471

RESUMO

BACKGROUND: Understanding the relation between the human microbiome and modulating factors, such as diet, may help researchers design intervention strategies that promote and maintain healthy microbial communities. Numerous analytical tools are available to help identify these relations, oftentimes via automated variable selection methods. However, available tools frequently ignore evolutionary relations among microbial taxa, potential relations between modulating factors, as well as model selection uncertainty. RESULTS: We present MicroBVS, an R package for Dirichlet-tree multinomial models with Bayesian variable selection, for the identification of covariates associated with microbial taxa abundance data. The underlying Bayesian model accommodates phylogenetic structure in the abundance data and various parameterizations of covariates' prior probabilities of inclusion. CONCLUSION: While developed to study the human microbiome, our software can be employed in various research applications, where the aim is to generate insights into the relations between a set of covariates and compositional data with or without a known tree-like structure.


Assuntos
Teorema de Bayes , Software , Algoritmos , Bacteroides/classificação , Dieta , Humanos , Microbiota , Filogenia , Prevotella/classificação
11.
Epilepsia ; 61(1): 29-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31792970

RESUMO

OBJECTIVE: We conducted clinical testing of an automated Bayesian machine learning algorithm (Epilepsy Seizure Assessment Tool [EpiSAT]) for outpatient seizure risk assessment using seizure counting data, and validated performance against specialized epilepsy clinician experts. METHODS: We conducted a prospective longitudinal study of EpiSAT performance against 24 specialized clinician experts at three tertiary referral epilepsy centers in the United States. Accuracy, interrater reliability, and intra-rater reliability of EpiSAT for correctly identifying changes in seizure risk (improvements, worsening, or no change) were evaluated using 120 seizures from four synthetic seizure diaries (seizure risk known) and 120 seizures from four real seizure diaries (seizure risk unknown). The proportion of observed agreement between EpiSAT and clinicians was evaluated to assess compatibility of EpiSAT with clinical decision patterns by epilepsy experts. RESULTS: EpiSAT exhibited substantial observed agreement (75.4%) with clinicians for assessing seizure risk. The mean accuracy of epilepsy providers for correctly assessing seizure risk was 74.7%. EpiSAT accurately identified seizure risk in 87.5% of seizure diary entries, corresponding to a significant improvement of 17.4% (P = .002). Clinicians exhibited low-to-moderate interrater reliability for seizure risk assessment (Krippendorff's α = 0.46) with good intrarater reliability across a 4- to 12-week evaluation period (Scott's π = 0.89). SIGNIFICANCE: These results validate the ability of EpiSAT to yield objective clinical recommendations on seizure risk which follow decision patterns similar to those from specialized epilepsy providers, but with improved accuracy and reproducibility. This algorithm may serve as a useful clinical decision support system for quantitative analysis of clinical seizure frequency in clinical epilepsy practice.


Assuntos
Algoritmos , Sistemas de Apoio a Decisões Clínicas , Epilepsia/complicações , Convulsões/diagnóstico , Convulsões/etiologia , Adulto , Teorema de Bayes , Criança , Feminino , Humanos , Lactente , Estudos Longitudinais , Aprendizado de Máquina , Masculino , Pacientes Ambulatoriais , Medição de Risco/métodos , Adulto Jovem
12.
Biometrics ; 76(4): 1120-1132, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32026459

RESUMO

Alzheimer's disease is the most common neurodegenerative disease. The aim of this study is to infer structural changes in brain connectivity resulting from disease progression using cortical thickness measurements from a cohort of participants who were either healthy control, or with mild cognitive impairment, or Alzheimer's disease patients. For this purpose, we develop a novel approach for inference of multiple networks with related edge values across groups. Specifically, we infer a Gaussian graphical model for each group within a joint framework, where we rely on Bayesian hierarchical priors to link the precision matrix entries across groups. Our proposal differs from existing approaches in that it flexibly learns which groups have the most similar edge values, and accounts for the strength of connection (rather than only edge presence or absence) when sharing information across groups. Our results identify key alterations in structural connectivity that may reflect disruptions to the healthy brain, such as decreased connectivity within the occipital lobe with increasing disease severity. We also illustrate the proposed method through simulations, where we demonstrate its performance in structure learning and precision matrix estimation with respect to alternative approaches.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doenças Neurodegenerativas , Doença de Alzheimer/diagnóstico por imagem , Teorema de Bayes , Disfunção Cognitiva/diagnóstico por imagem , Progressão da Doença , Humanos , Imageamento por Ressonância Magnética
13.
Biostatistics ; 19(1): 71-86, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28541380

RESUMO

Identification of clinically relevant tumor subtypes and omics signatures is an important task in cancer translational research for precision medicine. Large-scale genomic profiling studies such as The Cancer Genome Atlas (TCGA) Research Network have generated vast amounts of genomic, transcriptomic, epigenomic, and proteomic data. While these studies have provided great resources for researchers to discover clinically relevant tumor subtypes and driver molecular alterations, there are few computationally efficient methods and tools for integrative clustering analysis of these multi-type omics data. Therefore, the aim of this article is to develop a fully Bayesian latent variable method (called iClusterBayes) that can jointly model omics data of continuous and discrete data types for identification of tumor subtypes and relevant omics features. Specifically, the proposed method uses a few latent variables to capture the inherent structure of multiple omics data sets to achieve joint dimension reduction. As a result, the tumor samples can be clustered in the latent variable space and relevant omics features that drive the sample clustering are identified through Bayesian variable selection. This method significantly improve on the existing integrative clustering method iClusterPlus in terms of statistical inference and computational speed. By analyzing TCGA and simulated data sets, we demonstrate the excellent performance of the proposed method in revealing clinically meaningful tumor subtypes and driver omics features.


Assuntos
Teorema de Bayes , Genômica/métodos , Modelos Estatísticos , Neoplasias/diagnóstico , Análise por Conglomerados , Humanos
14.
Biometrics ; 75(1): 183-192, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30125947

RESUMO

In this article, we develop a Bayesian hierarchical mixture regression model for studying the association between a multivariate response, measured as counts on a set of features, and a set of covariates. We have available RNA-Seq and DNA methylation data measured on breast cancer patients at different stages of the disease. We account for the heterogeneity and over-dispersion of count data (here, RNA-Seq data) by considering a mixture of negative binomial distributions and incorporate the covariates (here, methylation data) into the model via a linear modeling construction on the mean components. Our modeling construction includes several innovative characteristics. First, it employs selection techniques that allow the identification of a small subset of features that best discriminate the samples while simultaneously selecting a set of covariates associated to each feature. Second, it incorporates known dependencies into the feature selection process via the use of Markov random field (MRF) priors. On simulated data, we show how incorporating existing information via the prior model can improve the accuracy of feature selection. In the analysis of RNA-Seq and DNA methylation data on breast cancer, we incorporate knowledge on relationships among genes via a gene-gene network, which we extract from the KEGG database. Our data analysis identifies genes which are discriminatory of cancer stages and simultaneously selects significant associations between those genes and DNA methylation sites. A biological interpretation of our findings reveals several biomarkers that can help understanding the effect of DNA methylation on gene expression transcription across cancer stages.


Assuntos
Teorema de Bayes , Distribuição Binomial , Neoplasias da Mama/genética , Redes Reguladoras de Genes , Modelos Estatísticos , Análise de Regressão , Sequência de Bases , Biomarcadores Tumorais , Metilação de DNA , Interpretação Estatística de Dados , Feminino , Humanos
15.
Physiol Genomics ; 50(6): 440-447, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29602296

RESUMO

Studies exploring the development of hypertension have traditionally been unable to distinguish which of the observed changes are underlying causes from those that are a consequence of elevated blood pressure. In this study, a custom-designed servo-control system was utilized to precisely control renal perfusion pressure to the left kidney continuously during the development of hypertension in Dahl salt-sensitive rats. In this way, we maintained the left kidney at control blood pressure while the right kidney was exposed to hypertensive pressures. As each kidney was exposed to the same circulating factors, differences between them represent changes induced by pressure alone. RNA sequencing analysis identified 1,613 differently expressed genes affected by renal perfusion pressure. Three pathway analysis methods were applied, one a novel approach incorporating arterial pressure as an input variable allowing a more direct connection between the expression of genes and pressure. The statistical analysis proposed several novel pathways by which pressure affects renal physiology. We confirmed the effects of pressure on p-Jnk regulation, in which the hypertensive medullas show increased p-Jnk/Jnk ratios relative to the left (0.79 ± 0.11 vs. 0.53 ± 0.10, P < 0.01, n = 8). We also confirmed pathway predictions of mitochondrial function, in which the respiratory control ratio of hypertensive vs. control mitochondria are significantly reduced (7.9 ± 1.2 vs. 10.4 ± 1.8, P < 0.01, n = 6) and metabolomic profile, in which 14 metabolites differed significantly between hypertensive and control medullas ( P < 0.05, n = 5). These findings demonstrate that subtle differences in the transcriptome can be used to predict functional changes of the kidney as a consequence of pressure elevation.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Inflamação/genética , Medula Renal/fisiologia , Medula Renal/fisiopatologia , Redes e Vias Metabólicas/genética , Perfusão , Animais , Teorema de Bayes , Respiração Celular , Hipertensão/genética , Metaboloma , Metabolômica , Mitocôndrias/metabolismo , Ratos Endogâmicos Dahl , Análise de Regressão , Software
16.
BMC Bioinformatics ; 18(1): 94, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28178947

RESUMO

BACKGROUND: The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. RESULTS: In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. CONCLUSIONS: Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature.


Assuntos
Bactérias/classificação , Modelos Lineares , Microbiota , Algoritmos , Teorema de Bayes , Simulação por Computador , Humanos , Cadeias de Markov , Método de Monte Carlo
17.
Hum Brain Mapp ; 38(3): 1311-1332, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27862625

RESUMO

In this article a multi-subject vector autoregressive (VAR) modeling approach was proposed for inference on effective connectivity based on resting-state functional MRI data. Their framework uses a Bayesian variable selection approach to allow for simultaneous inference on effective connectivity at both the subject- and group-level. Furthermore, it accounts for multi-modal data by integrating structural imaging information into the prior model, encouraging effective connectivity between structurally connected regions. They demonstrated through simulation studies that their approach resulted in improved inference on effective connectivity at both the subject- and group-level, compared with currently used methods. It was concluded by illustrating the method on temporal lobe epilepsy data, where resting-state functional MRI and structural MRI were used. Hum Brain Mapp 38:1311-1332, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Teorema de Bayes , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Epilepsia do Lobo Temporal/diagnóstico por imagem , Modelos Neurológicos , Adulto , Simulação por Computador , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
18.
Bioinformatics ; 32(24): 3774-3781, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27559156

RESUMO

MOTIVATION: By simplifying the many-bodied complexity of residue packing into patterns of simple pairwise secondary structure interactions between a single knob residue with a three-residue socket, the knob-socket construct allows a more direct incorporation of structural information into the prediction of residue contacts. By modeling the preferences between the amino acid composition of a socket and knob, we undertake an investigation of the knob-socket construct's ability to improve the prediction of residue contacts. The statistical model considers three priors and two posterior estimations to better understand how the input data affects predictions. This produces six implementations of KScons that are tested on three sets: PSICOV, CASP10 and CASP11. We compare against the current leading contact prediction methods. RESULTS: The results demonstrate the usefulness as well as the limits of knob-socket based structural modeling of protein contacts. The construct is able to extract good predictions from known structural homologs, while its performance degrades when no homologs exist. Among our six implementations, KScons MST-MP (which uses the multiple structure alignment prior and marginal posterior incorporating structural homolog information) performs the best in all three prediction sets. An analysis of recall and precision finds that KScons MST-MP improves accuracy not only by improving identification of true positives, but also by decreasing the number of false positives. Over the CASP10 and CASP11 sets, KScons MST-MP performs better than the leading methods using only evolutionary coupling data, but not quite as well as the supervised learning methods of MetaPSICOV and CoinDCA-NN that incorporate a large set of structural features. CONTACT: qiwei.li@rice.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Modelos Estatísticos , Estrutura Terciária de Proteína , Proteínas/química , Algoritmos , Aminoácidos/química , Teorema de Bayes , Modelos Moleculares , Estrutura Secundária de Proteína
19.
PLoS Comput Biol ; 12(4): e1004884, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27124473

RESUMO

The advent of functional genomics has enabled the genome-wide characterization of the molecular state of cells and tissues, virtually at every level of biological organization. The difficulty in organizing and mining this unprecedented amount of information has stimulated the development of computational methods designed to infer the underlying structure of regulatory networks from observational data. These important developments had a profound impact in biological sciences since they triggered the development of a novel data-driven investigative approach. In cancer research, this strategy has been particularly successful. It has contributed to the identification of novel biomarkers, to a better characterization of disease heterogeneity and to a more in depth understanding of cancer pathophysiology. However, so far these approaches have not explicitly addressed the challenge of identifying networks representing the interaction of different cell types in a complex tissue. Since these interactions represent an essential part of the biology of both diseased and healthy tissues, it is of paramount importance that this challenge is addressed. Here we report the definition of a network reverse engineering strategy designed to infer directional signals linking adjacent cell types within a complex tissue. The application of this inference strategy to prostate cancer genome-wide expression profiling data validated the approach and revealed that normal epithelial cells exert an anti-tumour activity on prostate carcinoma cells. Moreover, by using a Bayesian hierarchical model integrating genetics and gene expression data and combining this with survival analysis, we show that the expression of putative cell communication genes related to focal adhesion and secretion is affected by epistatic gene copy number variation and it is predictive of patient survival. Ultimately, this study represents a generalizable approach to the challenge of deciphering cell communication networks in a wide spectrum of biological systems.


Assuntos
Redes Reguladoras de Genes , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Teorema de Bayes , Comunicação Celular , Linhagem Celular , Linhagem Celular Tumoral , Técnicas de Cocultura , Biologia Computacional , Células Epiteliais/metabolismo , Perfilação da Expressão Gênica , Humanos , Masculino , Modelos Biológicos , Neoplasias da Próstata/metabolismo , Transdução de Sinais/genética
20.
Comput Stat Data Anal ; 112: 170-185, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29033478

RESUMO

A variable selection procedure is developed for a semi-competing risks regression model with three hazard functions that uses spike-and-slab priors and stochastic search variable selection algorithms for posterior inference. A rule is devised for choosing the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criterion (DIC) that is examined in a simulation study. The method is applied to data from esophageal cancer patients from the MD Anderson Cancer Center, Houston, TX, where the most important covariates are selected in each of the hazards of effusion, death before effusion, and death after effusion. The DIC procedure that is proposed leads to similar selected models regardless of the choices of some of the hyperparameters. The application results show that patients with intensity-modulated radiation therapy have significantly reduced risks of pericardial effusion, pleural effusion, and death before either effusion type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA