Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Blood ; 139(22): 3303-3313, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35313334

RESUMO

Pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL) outcome has improved in the last decades, but leukemic relapses are still one of the main problems of this disease. Bone morphogenetic protein 4 (BMP4) was investigated as a new candidate biomarker with potential prognostic relevance, and its pathogenic role was assessed in the development of disease. A retrospective study was performed with 115 pediatric patients with BCP-ALL, and BMP4 expression was analyzed by quantitative reverse transcription polymerase chain reaction in leukemic blasts at the time of diagnosis. BMP4 mRNA expression levels in the third (upper) quartile were associated with a higher cumulative incidence of relapse as well as a worse 5-year event-free survival and central nervous system (CNS) involvement. Importantly, this association was also evident among children classified as having a nonhigh risk of relapse. A validation cohort of 236 patients with BCP-ALL supported these data. Furthermore, high BMP4 expression promoted engraftment and rapid disease progression in an NSG mouse xenograft model with CNS involvement. Pharmacological blockade of the canonical BMP signaling pathway significantly decreased CNS infiltration and consistently resulted in amelioration of clinical parameters, including neurological score. Mechanistically, BMP4 favored chemoresistance, enhanced adhesion and migration through brain vascular endothelial cells, and promoted a proinflammatory microenvironment and CNS angiogenesis. These data provide evidence that BMP4 expression levels in leukemic cells could be a useful biomarker to identify children with poor outcomes in the low-/intermediate-risk groups of BCP-ALL and that BMP4 could be a new therapeutic target to blockade leukemic CNS disease.


Assuntos
Linfoma de Burkitt , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Animais , Proteína Morfogenética Óssea 4/genética , Criança , Células Endoteliais/metabolismo , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Recidiva , Estudos Retrospectivos , Microambiente Tumoral
2.
J Pathol ; 252(2): 189-200, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32686161

RESUMO

Despite current central nervous system-directed therapies for childhood B-cell precursor acute lymphoblastic leukaemia, relapse at this anatomical site still remains a challenging issue. Few reports have addressed the study of the specific cellular microenvironments which can promote the survival, quiescence, and therefore chemoresistance of B-cell precursor acute lymphoblastic leukaemia cells in the central nervous system. Herein, we showed by immunofluorescence and electron microscopy that in xenotransplanted mice, leukaemic cells infiltrate the connective tissue stroma of the choroid plexus, the brain structure responsible for the production of cerebrospinal fluid. The ultrastructural study also showed that leukaemia cells are able to migrate through blood vessels located in the choroid plexus stroma. In short-term co-cultures, leukaemic cells established strong interactions with human choroid plexus fibroblasts, mediated by an increased expression of ITGA4 (VLA-4)/ITGAL (LFA-1) and their ligands VCAM1/ICAM1. Upon contact with leukaemia cells, human choroid plexus fibroblasts acquired a cancer-associated fibroblast phenotype, with an increased expression of α-SMA and vimentin as well as pro-inflammatory factors. Human choroid plexus fibroblasts also have the capacity to reduce the proliferative index of leukaemic blasts and promote their survival and chemoresistance to methotrexate and cytarabine. The inhibition of VLA-4/VCAM-1 interactions using anti-VLA-4 antibodies, and the blockade of Notch signalling pathway by using a γ-secretase inhibitor partially restored chemotherapy sensitivity of leukaemia cells. We propose that the choroid plexus stroma constitutes a sanctuary for B-cell precursor acute lymphoblastic leukaemia cells in the central nervous system. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Plexo Corióideo/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Animais , Criança , Resistencia a Medicamentos Antineoplásicos/fisiologia , Fibroblastos/patologia , Xenoenxertos , Humanos , Camundongos
4.
Cytotherapy ; 19(5): 640-653, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28262465

RESUMO

Fibroblastic reticular cells (FRCs) are essential players during adaptive immune responses not only as a structural support for the encounter of antigen-presenting cells and naive T lymphocytes but also as a source of modulatory signals. However, little is known about this cell population in humans. To address the phenotypical and functional analysis of human FRCs here we established splenic (SP) and mesenteric lymph node (LN) CD45-CD31-CD90+podoplanin+ myofibroblastic cell cultures. They shared the phenotypical characteristics distinctive of FRCs, including the expression of immunomodulatory factors and peripheral tissue antigens. Nevertheless, human FRCs also showed particular features, some differing from mouse FRCs, like the lack of nitric oxide synthase (NOS2) expression after interferon (IFN)γstimulation. Interestingly, SP-FRCs expressed higher levels of interleukin (IL)-6, BMP4, CCL2, CXCL12 and Notch molecules, and strongly adapted their functional profile to lipopolysaccharide (LPS), polyinosinic:polycytidylic acid (Poly I:C) and IFNγ stimulation. In contrast, we found higher expression of transforming growth factor (TGF)ß and Activin A in LN-FRCs that barely responded via Toll-Like Receptor (TLR)3 and constitutively expressed retinaldehyde dehydrogenase 1 enzyme, absent in SP-FRCs. This study reveals human FRCs can be valuable models to increase our knowledge about the physiology of human secondary lymphoid organs in health and disease and to explore the therapeutic options of FRCs.


Assuntos
Fibroblastos/citologia , Imunoterapia , Imunidade Adaptativa , Animais , Proteínas de Ligação a DNA , Feminino , Fibroblastos/metabolismo , Humanos , Imunomodulação , Terapia de Imunossupressão , Inflamação/patologia , Linfonodos/citologia , Masculino , Camundongos , Miofibroblastos/citologia , Miofibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Fenótipo , Baço/citologia , Linfócitos T/citologia , Linfócitos T/imunologia , Fatores de Transcrição
5.
Eur J Immunol ; 44(4): 1031-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24532425

RESUMO

Bone morphogenetic proteins (BMPs) are multifunctional growth factors regulating differentiation and proliferation in numerous systems including the immune system. Previously, we described that the BMP signaling pathway is functional in human monocyte-derived dendritic cells (MoDCs), which were found to express both the specific receptors and the Smad proteins required for signal transduction. In this study, we provide evidence that human MoDCs produce BMP-4 and that this production is increased over the maturation process as is BMP signal transduction. When DCs are matured in the presence of an inhibitor of the BMP pathway, the expression of the maturation markers PD-L1 and PD-L2 is reduced, while cytokine production is not affected. As a result, these mature DCs present an augmented ability to stimulate both T cells and NK cells. Eventually, the inhibition of BMP signaling during maturation causes a reduced expression of IRF-1, a transcription factor that positively regulates the expression of PD-L1 and PD-L2. The present study indicates that the BMP signaling pathway regulates PD-L1 and PD-L2 expression in human MoDCs during the maturation process, probably through the IRF-1 transcription factor, and also points out that the manipulation of BMP signaling might considerably improve the immunogenicity of MoDCs used in immunotherapy.


Assuntos
Comunicação Autócrina/imunologia , Antígeno B7-H1/imunologia , Proteína Morfogenética Óssea 4/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Comunicação Autócrina/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Proteína Morfogenética Óssea 4/genética , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Humanos , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética
6.
Immunol Cell Biol ; 93(7): 673-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25753268

RESUMO

Human thymus contains two major subpopulations of dendritic cells (DCs), conventional DCs (cDCs) and plasmacytoid DCs (pDCs), which are mainly involved in central tolerance and also in protecting the thymus against infections. In blood and peripheral organs cDCs include the subpopulation of BDCA3(hi) DCs, considered as equivalents to mouse CD8α(+) DCs. In this study we describe in human thymus the presence of a discrete population of BDCA3(hi) DCs that, like their peripheral counterparts, express CD13, low-intermediate levels of CD11c, CLEC9A, high levels of XCR1, IRF8 and TLR3, and mostly lack the expression of CD11b, CD14 and TLR7. Thymic BDCA3(hi) DCs display immature features with a low expression of costimulatory molecules and HLA-DR, and a low allostimulatory capacity. Also, BDCA3(hi) DCs exhibit a strong response to TLR3 stimulation, producing high levels of interferon (IFN)-λ1 and CXCL10, which indicates that, similarly to thymic pDCs, BDCA3(hi) DCs can have an important role in thymus protection against viral infections.


Assuntos
Antígenos de Superfície/análise , Células Dendríticas/citologia , Interleucinas/análise , Timo/citologia , Antígenos de Diferenciação/análise , Apoptose , Células Cultivadas , Quimiocina CXCL10/análise , Pré-Escolar , Técnicas de Cocultura , Células Dendríticas/química , Células Dendríticas/classificação , Antígenos HLA-DR/análise , Humanos , Lactente , Recém-Nascido , Interferons , Interleucinas/biossíntese , Interleucinas/genética , Lectinas Tipo C/análise , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores Acoplados a Proteínas G/análise , Receptores Mitogênicos/análise , Trombomodulina , Timo/imunologia , Receptor 3 Toll-Like/análise
7.
Blood ; 119(8): 1861-71, 2012 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-22210872

RESUMO

The bone morphogenetic protein (BMP) signaling pathway regulates survival, proliferation, and differentiation of several cell types in multiple tissues, including the thymus. Previous reports have shown that BMP signaling negatively regulates T-cell development. Here, we study the subpopulation of early human intrathymic progenitors expressing the type IA BMP receptor (BMPRIA) and provide evidence that CD34(+)CD1a(-)BMPRIA(+) precursor cells mostly express surface cell markers and transcription factors typically associated with NK cell lineage. These CD34(+) cells mostly differentiate into functional CD56(+) natural killer (NK) cells when they are cocultured with thymic stromal cells in chimeric human-mouse fetal thymic organ cultures and also in the presence of SCF and IL-15. Moreover, autocrine BMP signaling can promote the differentiation of thymic NK cells by regulating the expression of key transcription factors required for NK cell lineage (eg, Id3 and Nfil3) as well as one of the components of IL-15 receptor, CD122. Subsequently, the resulting population of IL-15-responsive NK cell precursors can be expanded by IL-15, whose action is mediated by BMP signaling during the last steps of thymic NK cell differentiation. Our results strongly suggest that BMPRIA expression identifies human thymic NK cell precursors and that BMP signaling is relevant for NK cell differentiation in the human thymus.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Timócitos/metabolismo , Animais , Antígenos CD34/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Antígeno CD56/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula , Células Cultivadas , Pré-Escolar , Técnicas de Cocultura , Citometria de Fluxo , Expressão Gênica , Humanos , Células Híbridas/metabolismo , Células Híbridas/ultraestrutura , Imunofenotipagem , Lactente , Interleucina-15/farmacologia , Camundongos , Camundongos SCID , Microscopia Eletrônica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Timo/citologia , Timo/embriologia
8.
J Immunol ; 187(8): 4129-39, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21918189

RESUMO

Dendritic cells (DCs) are critical regulators of immune responses that integrate signals from the innate and adaptive immune system and orchestrate T cell responses toward either immunity or tolerance. Growing evidence points to the Wnt signaling pathway as a pivotal piece in the immune balance and focuses on DCs as a direct target for their immunoregulatory role. Our results show that the increase in Wnt5a signaling during the differentiation of human DCs from monocytes alters their phenotype and compromises their subsequent capacity to mature in response to TLR-dependent stimuli. These Wnt5a-DCs produce scant amounts of IL-12p70 and TNF-α but increased levels of IL-10. Consequently, these Wnt5a-DCs have a reduced capacity to induce Th1 responses that promote IL-10 secretion by CD4 T cells. Changes in the transcriptional profile of Wnt5a-DCs correlate with their unconventional phenotype caused presumably by increased IL-6/IL-10 signaling during the process of DC differentiation. The effect of Wnt5a is not a consequence of ß-catenin accumulation but is dependent on noncanonical Ca(2+)/calmodulin-dependent protein kinase II/NF-κB signaling. Our results therefore suggest that under high levels of Wnt5a, typical of the inflammatory state and sepsis, monocytes could differentiate into unconventional DCs with tolerogenic features.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/citologia , Tolerância Imunológica/imunologia , Monócitos/citologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Wnt/imunologia , Separação Celular , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Imunofluorescência , Humanos , Ativação Linfocitária/imunologia , Teste de Cultura Mista de Linfócitos , Monócitos/imunologia , Monócitos/metabolismo , Fenótipo , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/imunologia , Proteínas Wnt/metabolismo , Proteína Wnt-5a
9.
Immunol Cell Biol ; 89(5): 610-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21102536

RESUMO

Bone morphogenetic proteins (BMPs), members of the transforming growth factor-ß superfamily, are multifunctional polypeptides regulating a broad spectrum of functions in embryonic and adult tissues. Recent reports have demonstrated that BMPs regulate the survival, proliferation and differentiation of several cell types in the immune system. In this study, we investigate the effects of BMP signaling activation on the capacity of human dendritic cells (DCs) to stimulate immune responses. Human DCs express type I and type II BMP receptors (BMPRIA, BMPRIB, type IA activin receptor, BMPRII) and BMP signal transduction molecules (Smad1, 5, and 8, as well as Smad4). On BMP stimulation, Id1-3 (inhibitor of differentiation 1-3/DNA binding) mRNA expression is upregulated and this effect can be blocked with the inhibitor dorsomorphin, showing that the canonical BMP signal transduction pathway is functionally active in DCs. BMP signaling activation promotes the phenotypic maturation of human DCs by increasing the expression of co-stimulatory molecules and also CD83, programmed cell death ligand 1 (PD-L1) and PD-L2, and stimulates cytokine secretion, mainly interleukin-8 and tumor necrosis factor-α. Accordingly, BMP-treated DCs exhibit an enhanced T-cell stimulatory capacity. BMP signaling also enhances the survival of human DCs increasing the Bcl-2/Bax ratio. Finally, the expression of Runx transcription factors is increased in mature DCs, and the mRNA levels of Runx1-3 are upregulated in response to BMP stimulation, indicating that Runx transcription factor family may mediate the effects of BMP signaling in human DC maturation.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Monócitos/citologia , Proteínas Morfogenéticas Ósseas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Subunidades alfa de Fatores de Ligação ao Core/genética , Citocinas/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunização , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Fenótipo , RNA Mensageiro/genética , Transdução de Sinais/efeitos dos fármacos
10.
Neuroimmunomodulation ; 17(3): 217-20, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20134207

RESUMO

CXCL12 is an important CXC chemokine involved in numerous biological processes. We had previously demonstrated the synergistic participation of CXCL12 and IL-7 in the control of both survival and proliferation of CD34(+) human thymic lymphoid progenitors. On this basis, we hypothesize a presumptive role for CXCL12 and its receptor, CXCR4, in the thymus involution. In this respect, in the current report we describe the expression of both molecules in the human thymus during aging. Our results demonstrate that, despite the profound alterations observed in the thymic epithelial microenvironment of aged thymuses, the proportions of different CD4/CD8 thymocyte subsets do not undergo significant variations. Remarkably, a strong CXCL12 expression was found in older thymuses, which appeared in the same locations as in younger thymuses: the subcapsulary and medullary areas. The proportions of CXCR4(+) cells, most of them belonging to the CD3(-) compartment, showed no important variations in the older thymuses. However, within the CD34(+) cell population, a significant reduction in the expression of CXCR4 molecules was observed.


Assuntos
Envelhecimento/imunologia , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Linfócitos T/imunologia , Timo/imunologia , Adolescente , Adulto , Idoso , Antígenos CD34/metabolismo , Atrofia/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/imunologia , Proliferação de Células , Homeostase/imunologia , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Células-Tronco/citologia , Células-Tronco/imunologia , Linfócitos T/citologia , Timo/citologia , Adulto Jovem
11.
Front Immunol ; 11: 567391, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329530

RESUMO

Recent clinical observations indicate that bacterial vaccines induce cross-protection against infections produced by different microorganisms. MV130, a polyvalent bacterial sublingual preparation designed to prevent recurrent respiratory infectious diseases, reduces the infection rate in patients with recurrent respiratory tract infections. On the other hand, mesenchymal stem cells (MSCs) are key cell components that contribute to the maintenance of tissue homeostasis and exert both immunostimulatory and immunosuppressive functions. Herein, we study the effects of MV130 in human MSC functionality as a potential mechanism that contributes to its clinical benefits. We provide evidence that during MV130 sublingual immunization of mice, resident oral mucosa MSCs can take up MV130 components and their numbers remain unchanged after vaccination, in contrast to granulocytes that are recruited from extramucosal tissues. MSCs treated in vitro with MV130 show an increased viability without affecting their differentiation potential. In the short-term, MSC treatment with MV130 induces higher leukocyte recruitment and T cell expansion. In contrast, once T-cell activation is initiated, MV130 stimulation induces an up-regulated expression of immunosuppressor factors in MSCs. Accordingly, MV130-primed MSCs reduce T lymphocyte proliferation, induce the differentiation of dendritic cells with immunosuppressive features and favor M2-like macrophage polarization, thus counterbalancing the immune response. In addition, MSCs trained with MV130 undergo functional changes, enhancing their immunomodulatory response to a secondary stimulus. Finally, we show that MSCs are able to uptake, process and retain a reservoir of the TLR ligands derived from MV130 digestion which can be subsequently transferred to dendritic cells, an additional feature that also may be associated to trained immunity.


Assuntos
Vacinas Bacterianas/imunologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Mucosa Bucal/imunologia , Mucosa Bucal/metabolismo , Administração Sublingual , Animais , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunização , Memória Imunológica , Imunomodulação , Imunofenotipagem , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/terapia , Leucócitos/imunologia , Leucócitos/metabolismo , Ativação Linfocitária/imunologia , Células-Tronco Mesenquimais/citologia , Camundongos , Receptores de Reconhecimento de Padrão/metabolismo
12.
J Leukoc Biol ; 83(6): 1476-83, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18334540

RESUMO

The Hedgehog (Hh) family of signaling molecules functions in the development of numerous tissues during embryogenesis and has also been involved in adult self-renewing tissues. Recent results have demonstrated that the different components of the Hh signaling pathway are expressed in the human thymus. In this study, we investigate whether thymic dendritic cells (DCs) are cell targets for Hh signaling. Both components of the Hh receptor, Patched and Smoothened, as well as other Hh-binding proteins with modulating functions, are expressed by human thymic DCs. The expression of Gli1, Gli2, and Gli3 transcription factors suggests that the Hh signaling pathway is active in thymic DCs, and approximately one-half of thymic DCs produces Sonic Hh (Shh). The culture of thymic DCs with Shh protects them from apoptosis [similarly to CD40 ligand (CD40L)], and these antiapoptotic effects are related to an up-regulation of Bcl-2 and Bcl-X(L) protein expression. The addition of the Hh pathway inhibitor, cyclopamine, decreases DC viability and impairs their allostimulatory function in vitro. In addition, the blockade of the Hh signaling pathway by cyclopamine treatment abrogates the up-regulation of HLA-DR, CD86, CD80, and CD83 expression induced by CD40L on thymic DCs. Finally, we also show that after activation with CD40L thymic DCs down-regulate the expression of Hh receptor components as well as Shh production. Taken together, these results suggest that the survival and function of thymic DCs are regulated by an autocrine Hh signaling.


Assuntos
Células Dendríticas/fisiologia , Proteínas Hedgehog/fisiologia , Transdução de Sinais/fisiologia , Timo/citologia , Antígenos CD40/fisiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Receptores Patched , Receptores de Superfície Celular/fisiologia
13.
Cells ; 8(7)2019 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-31337120

RESUMO

Dendritic cells and macrophages are common components of the tumour immune microenvironment and can contribute to immune suppression in both solid and haematological cancers. The Bone Morphogenetic Protein (BMP) pathway has been reported to be involved in cancer, and more recently in leukaemia development and progression. In the present study, we analyse whether acute lymphoblastic leukaemia (ALL) cells can affect the differentiation of dendritic cells and macrophages and the involvement of BMP pathway in the process. We show that ALL cells produce BMP4 and that conditioned media from ALL cells promote the generation of dendritic cells with immunosuppressive features and skew M1-like macrophage polarization towards a less pro-inflammatory phenotype. Likewise, BMP4 overexpression in ALL cells potentiates their ability to induce immunosuppressive dendritic cells and favours the generation of M2-like macrophages with pro-tumoral features. These results suggest that BMP4 is in part responsible for the alterations in dendritic cell and macrophage differentiation produced by ALL cells.


Assuntos
Proteína Morfogenética Óssea 4/fisiologia , Células Dendríticas/patologia , Macrófagos/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Microambiente Tumoral , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Ativação de Macrófagos
14.
Immunol Lett ; 120(1-2): 72-8, 2008 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-18692524

RESUMO

CXCL12, a member of the chemokine CXC subfamily, and its physiologic receptor CXCR4 are essential for the development of various organs during embryonic development and are also involved in the control of cell survival, proliferation and migration in adult tissues. In the human thymus, CXCL12 is produced by epithelial cells located in the subcapsular and medullary regions and CXCR4 is expressed in different thymocyte subpopulations. Several results have demonstrated that CXCL12/CXCR4 signaling participates in different intrathymic processes including the control of human precursor cell survival and proliferation, and the exit of mature thymocytes to the periphery. In this study, we show that CXCL12 is also produced by human thymic dendritic cells (DCs), most of which express CXCR4 receptor. The addition of exogenous CXCL12 significantly inhibited the serum depletion-induced apoptosis in thymic DCs, and the treatment with neutralizing antibodies against CXCL12 or CXCR4 decreased their survival. The survival-promoting effect of CXCL12 was mediated by the up-regulation of Bcl-2 protein expression and the concomitant down-regulation of Bax protein expression. The higher viability of thymic DCs also enhanced their allostimulatory capacity. Taken together, the results suggest a new function of CXCL12 in the human thymus controlling the survival and functionality of thymic DCs.


Assuntos
Quimiocina CXCL12/imunologia , Ciclina D1/imunologia , Células Dendríticas , Regulação da Expressão Gênica , Receptores CXCR4/imunologia , Transdução de Sinais , Proteína X Associada a bcl-2/imunologia , Sobrevivência Celular , Células Cultivadas , Pré-Escolar , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Lactente , Timo/citologia , Timo/imunologia
15.
Stem Cell Res Ther ; 8(1): 208, 2017 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962641

RESUMO

BACKGROUND: Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. METHODS: Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). RESULTS: While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. CONCLUSIONS: Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders.


Assuntos
Polpa Dentária/citologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Imunomodulação , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Técnicas de Cocultura , Células Dendríticas/citologia , Células Dendríticas/imunologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/citologia
16.
Clin Cancer Res ; 23(23): 7388-7399, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28928159

RESUMO

Purpose: Bladder cancer is a current clinical and social problem. At diagnosis, most patients present with nonmuscle-invasive tumors, characterized by a high recurrence rate, which could progress to muscle-invasive disease and metastasis. Bone morphogenetic protein (BMP)-dependent signaling arising from stromal bladder tissue mediates urothelial homeostasis by promoting urothelial cell differentiation. However, the possible role of BMP ligands in bladder cancer is still unclear.Experimental Design: Tumor and normal tissue from 68 patients with urothelial cancer were prospectively collected and analyzed for expression of BMP and macrophage markers. The mechanism of action was assessed in vitro by experiments with bladder cancer cell lines and peripheral blood monocyte-derived macrophages.Results: We observed BMP4 expression is associated and favored type II macrophage differentiation. In vitro experiments showed that both recombinant BMP4 and BMP4-containing conditioned media from bladder cancer cell lines favored monocyte/macrophage polarization toward M2 phenotype macrophages, as shown by the expression and secretion of IL10. Using a series of human bladder cancer patient samples, we also observed increased expression of BMP4 in advanced and undifferentiated tumors in close correlation with epithelial-mesenchymal transition (EMT). However, the p-Smad 1,5,8 staining in tumors showing EMT signs was reduced, due to the increased miR-21 expression leading to reduced BMPR2 expression.Conclusions: These findings suggest that BMP4 secretion by bladder cancer cells provides the M2 signal necessary for a protumoral immune environment. In addition, the repression of BMPR2 by miR-21 makes the tumor cells refractory to the prodifferentiating actions mediated by BMP ligands, favoring tumor growth. Clin Cancer Res; 23(23); 7388-99. ©2017 AACR.


Assuntos
Proteína Morfogenética Óssea 4/genética , Regulação Neoplásica da Expressão Gênica , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Neoplasias da Bexiga Urinária/genética , Idoso , Idoso de 80 Anos ou mais , Proteína Morfogenética Óssea 4/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Progressão da Doença , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Células K562 , Macrófagos/classificação , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Estudos Prospectivos , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
17.
Arthritis Res Ther ; 17: 192, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215036

RESUMO

INTRODUCTION: Bone morphogenetic proteins (BMPs) are multifunctional secreted growth factors regulating a broad spectrum of functions in numerous systems. An increased expression and production of specific BMPs have been described in the rheumatoid arthritis (RA) synovium. The aim of this study was to analyze the involvement of the BMP signaling pathway in RA synoviocytes in response to interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α). METHODS: The expression of components of the BMP signaling pathway (BMP receptors, BMP ligands, BMP signal transducers, and BMP antagonists) was analyzed by quantitative polymerase chain reaction before and after treatment of RA synoviocytes with TNF-α or IL-17 or both. Regulation was studied in the presence of the specific BMP inhibitor DMH1 (dorsomorphin homologue 1) or an exogenous BMP ligand, BMP6. Expression and production of pro-inflammatory cytokines (IL-6 and granulocyte-macrophage colony-stimulating factor), chemokines (IL-8, CCL2, CCL5, and CXCL10), and matrix metalloproteinases (MMP-1, -2, -3, -9, and -13) were analyzed. RESULTS: RA synoviocytes express BMP receptors (mainly BMPRIA, ACTRIA, and BMPRII), signal transducers of the Smad family (Smad1 and 5 and co-Smad4), and different BMP antagonists. The modulation of the expression of the BMP target genes-Id (inhibitor of DNA-binding/differentiation) proteins and Runx (Runt-related transcription factor) transcription factors-after the addition of exogenous BMP shows that the BMP signaling pathway is active. RA synoviocytes also express BMP ligands (BMP2, BMP6, and BMP7) which are highly upregulated after activation with TNF-α and IL-17. Autocrine BMP signaling pathway can be blocked by treatment with the inhibitor DMH1, leading to an increase in the upregulated expression of pro-inflammatory cytokines, chemokines, and MMPs induced by the activation of RA synoviocytes with TNF-α and IL-17. Conversely, the additional stimulation of the BMP pathway with the exogenous addition of the BMP6 ligand decreases the expression of those pro-inflammatory and pro-destructive factors. CONCLUSION: The results indicate that the canonical BMP pathway is functionally active in human RA synoviocytes and that the inhibition of autocrine BMP signaling exacerbates the pro-inflammatory phenotype induced in RA synoviocytes by the stimulation with IL-17 and TNF-α.


Assuntos
Artrite Reumatoide/metabolismo , Proteínas Morfogenéticas Ósseas/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Interleucina-17/farmacologia , Membrana Sinovial/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Artrite Reumatoide/patologia , Proteínas Morfogenéticas Ósseas/biossíntese , Células Cultivadas , Humanos , Fenótipo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Membrana Sinovial/citologia , Membrana Sinovial/efeitos dos fármacos
18.
PLoS One ; 10(6): e0131453, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26110906

RESUMO

Bone Morphogenetic Proteins (BMPs) form a group of secreted factors that belongs to the TGF-ß superfamily. Among different roles in a number of immune cell types, BMPs are known to regulate T cell development within the thymus, although the role of BMP signaling in human mature T cells remains elusive. In this study, we demonstrate that canonical BMP signaling is necessary during two critical events that regulate the size and function of human naive CD4+ T cell population: activation and homeostasis. Upon stimulation via TCR, naive CD4+ T cells upregulate the expression of BMP ligands triggering canonical BMP signaling in CD25+ cells. Blockade of BMP signaling severely impairs CD4+ T cell proliferation after activation mainly through regulation of IL-2, since the addition of this cytokine recuperates normal T cell expansion after inhibition of BMP signaling. Similarly, activation of canonical BMP pathway is required for both the maintenance of cell survival and the homeostatic proliferation induced by IL-7, a key factor for T cell homeostasis. Moreover, upregulation of two critical receptors for T cell homeostasis, CXCR4 and CCR9, triggered by IL-7 is also abrogated in the absence of BMP signaling. Collectively, we describe important roles of the canonical BMP signaling in human naive CD4+ T cell activation and homeostasis that could be valuable for clinical application.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Receptores de Activinas Tipo II/metabolismo , Apoptose/imunologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Linfócitos T CD4-Positivos/citologia , Proliferação de Células , Células Cultivadas , Regulação da Expressão Gênica , Humanos , Interleucina-2/metabolismo , Interleucina-7/metabolismo
19.
Cancer Lett ; 363(2): 156-65, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-25917077

RESUMO

Mesenchymal stem cells (MSCs) are key components of the bone marrow microenvironment which contribute to the maintenance of the hematopoietic stem cell niche and exert immunoregulatory functions in innate and adaptive immunity. We analyze the immunobiology of MSCs derived from acute lymphoblastic leukemia (ALL) patients and their impact on NK cell function. In contrast to the inhibitory effects on the immune response exerted by MSCs from healthy donors (Healthy-MSCs), we demonstrate that MSCs derived from low/intermediate risk ALL patients at diagnosis (ALL-MSCs) promote an efficient NK cell response including cytokine production, phenotypic activation and most importantly, cytotoxicity. Longitudinal studies indicate that these immunostimulatory effects of ALL-MSCs are progressively attenuated. Healthy-MSCs adopt ALL-MSC-like immunomodulatory features when exposed to leukemia cells, acquiring the ability to stimulate NK cell antitumor function. The mechanisms underlying to these functional changes of ALL-MSCs include reduced production of soluble inhibitory factors, differential expression of costimulatory and coinhibitory molecules, increased expression of specific TLRs and Notch pathway activation. Collectively our findings indicate that, in response to leukemia cells, ALL-MSCs could mediate a host beneficial immunomodulatory effect by stimulating the antitumor innate immune response.


Assuntos
Células Matadoras Naturais/imunologia , Células-Tronco Mesenquimais/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Microambiente Tumoral/imunologia , Adolescente , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Terapia Baseada em Transplante de Células e Tecidos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Células Matadoras Naturais/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Estadiamento de Neoplasias , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Fatores de Risco
20.
J Histochem Cytochem ; 51(11): 1557-66, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14566027

RESUMO

The Hedgehog (Hh) family of secreted proteins includes intercellular signaling molecules that specify cell fate and patterning during the development of many tissues. In this study we show that the different components of the Hh signaling pathway are expressed in human thymus. The three mammalian Hh proteins, Sonic (Shh), Indian (Ihh), and Desert (Dhh) hedgehog, are produced by thymic epithelial cells. Shh-expressing epithelial cells are restricted to the thymic subcapsula and medulla, whereas Ihh- and Dhh-producing epithelial cells are distributed throughout the thymus. The requisite Hh receptors, Patched 1(Ptc1) and Smoothened (Smo), and the Gli transcription factors are expressed by thymocytes and also by epithelial cells. Ptc1 is expressed in most thymocyte subsets, whereas Smo expression is mainly associated with immature thymocytes. The isoform of the Ptc receptor, Ptc2, is expressed only by intrathymic progenitor cells and epithelial cells. Other Hh-binding proteins with modulating functions, such as Hedgehog-interacting protein (Hip) and growth arrest-specific gene-1 (Gas-1), are also expressed in human thymus. Our study shows that the intrathymic expression pattern of the Hh signaling pathway components is complex and suggests that Hh proteins may regulate human thymocyte differentiation from the earliest developmental stages, as well as thymic epithelial cell function.


Assuntos
Timo/metabolismo , Transativadores/biossíntese , Linhagem Celular , Pré-Escolar , Citometria de Fluxo , Imunofluorescência , Proteínas Hedgehog , Humanos , Lactente , Recém-Nascido , Proteínas de Membrana/biossíntese , Proteínas Oncogênicas/biossíntese , Receptores Patched , Receptor Patched-1 , Receptores de Superfície Celular , Receptores Acoplados a Proteínas G/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor Smoothened , Fatores de Transcrição/biossíntese , Proteína GLI1 em Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA