Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 37(6): 1157-1167, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28408371

RESUMO

OBJECTIVE: Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) mediates inflammatory and potentially proatherogenic effects, whereas the role of intracellular NAMPT (iNAMPT), the rate limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD)+ generation, in atherogenesis is largely unknown. Here we investigated the effects of iNAMPT overexpression in leukocytes on inflammation and atherosclerosis. APPROACH AND RESULTS: Low-density lipoprotein receptor-deficient mice with hematopoietic overexpression of human iNAMPT (iNAMPThi), on a western type diet, showed attenuated plaque burden with features of lesion stabilization. This anti-atherogenic effect was caused by improved resistance of macrophages to apoptosis by attenuated chemokine (C-C motif) receptor 2-dependent monocyte chemotaxis and by skewing macrophage polarization toward an anti-inflammatory M2 phenotype. The iNAMPThi phenotype was almost fully reversed by treatment with the NAMPT inhibitor FK866, indicating that iNAMPT catalytic activity is instrumental in the atheroprotection. Importantly, iNAMPT overexpression did not induce any increase in eNAMPT, and eNAMPT had no effect on chemokine (C-C motif) receptor 2 expression and promoted an inflammatory M1 phenotype in macrophages. The iNAMPT-mediated effects at least partly involved sirtuin 1-dependent molecular crosstalk of NAMPT and peroxisome proliferator-activated receptor γ. Finally, iNAMPT and peroxisome proliferator-activated receptor γ showed a strong correlation in human atherosclerotic, but not healthy arteries, hinting to a relevance of iNAMPT/peroxisome proliferator-activated receptor γ pathway also in human carotid atherosclerosis. CONCLUSIONS: This study highlights the functional dichotomy of intracellular versus extracellular NAMPT, and unveils a critical role for the iNAMPT-peroxisome proliferator-activated receptor γ axis in atherosclerosis.


Assuntos
Aterosclerose/prevenção & controle , Diferenciação Celular , Citocinas/metabolismo , Leucócitos/enzimologia , Macrófagos/metabolismo , Monócitos/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , PPAR gama/metabolismo , Idoso , Animais , Apoptose , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/genética , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Predisposição Genética para Doença , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/patologia , Ativação de Macrófagos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Monócitos/efeitos dos fármacos , Monócitos/patologia , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Nicotinamida Fosforribosiltransferase/genética , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Sirtuína 1/metabolismo , Fatores de Tempo , Regulação para Cima
2.
Biochim Biophys Acta ; 1838(6): 1638-56, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24440426

RESUMO

The endogenous synthesis of lipids, which requires suitable dietary raw materials, is critical for the formation of membrane bilayers. In eukaryotic cells, phospholipids are the predominant membrane lipids and consist of hydrophobic acyl chains attached to a hydrophilic head group. The relative balance between saturated, monounsaturated, and polyunsaturated acyl chains is required for the organization and normal function of membranes. Virgin olive oil is the richest natural dietary source of the monounsaturated lipid oleic acid and is one of the key components of the healthy Mediterranean diet. Virgin olive oil also contains a unique constellation of many other lipophilic and amphipathic constituents whose health benefits are still being discovered. The focus of this review is the latest evidence regarding the impact of oleic acid and the minor constituents of virgin olive oil on the arrangement and behavior of lipid bilayers. We highlight the relevance of these interactions to the potential use of virgin olive oil in preserving the functional properties of membranes to maintain health and in modulating membrane functions that can be altered in several pathologies. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Óleos de Plantas/farmacologia , Animais , Membrana Celular/química , Humanos , Bicamadas Lipídicas/química , Azeite de Oliva , Óleos de Plantas/química
3.
J Nutr ; 143(5): 620-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23486980

RESUMO

Postprandial triglyceride (TG)-rich lipoproteins (TRLs) transport dietary fatty acids through the circulatory system to satisfy the energy and structural needs of the tissues. However, fatty acids are also able to modulate gene expression and/or induce cell death. We investigated the underlying mechanism by which postprandial TRLs of different fatty acid compositions can induce cell death in human monocytes. Three types of dietary fat [refined olive oil (ROO), high-palmitic sunflower oil (HPSO), and butter] with progressively increasing SFA:MUFA ratios (0.18, 0.41, and 2.08, respectively) were used as a source of postprandial TRLs (TRL-ROO, TRL-HPSO, and TRL-BUTTER) from healthy men. The monocytic cell line THP-1 was used as a model for this study. We demonstrated that postprandial TRLs increased intracellular lipid accumulation (31-106%), reactive oxygen species production (268-349%), DNA damage (133-1467%), poly(ADP-ribose) polymerase 1 (800-1710%) and caspase-3 (696-1244%) activities, and phosphorylation of c-Jun NH2-terminal kinase (JNK) (54 kDa, 141-288%) and p38 (24-92%). These effects were significantly greater with TRL-BUTTER, and TRL-ROO did not induce DNA damage, DNA fragmentation, or p38 phosphorylation. In addition, blockade of p38, but not of JNK, significantly decreased intracellular lipid accumulation and increased cell death in postprandial TRL-treated cells. These results suggest that in human monocytes, p38 is involved in survival signaling pathways that protect against the lipid-mediated cytotoxicity induced by postprandial TRLs that are abundant in saturated fatty acids.


Assuntos
Morte Celular , Gorduras na Dieta/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/farmacologia , Lipoproteínas/metabolismo , Monócitos/efeitos dos fármacos , Triglicerídeos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Manteiga , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Dano ao DNA , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/metabolismo , Ácidos Graxos/efeitos adversos , Ácidos Graxos/metabolismo , Ácidos Graxos Monoinsaturados/metabolismo , Humanos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Monócitos/metabolismo , Azeite de Oliva , Fosforilação , Óleos de Plantas/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Período Pós-Prandial , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Óleo de Girassol
4.
Nutrients ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299518

RESUMO

This Special Issue of Nutrients "Dietary Influence on Nutritional Epidemiology, Public Health and Our Lifestyle", includes nine original articles and one systematic review related to the associations between some dietary patterns, lifestyle, and socio-demographic factors, analyzed either separately or in combination, with the risk and management of cardiovascular diseases and mental health problems, such as depression and dementia [...].


Assuntos
Dieta , Saúde Pública
5.
J Cereb Blood Flow Metab ; 43(11): 1919-1930, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37357772

RESUMO

Aneurysmal subarachnoid hemorrhage (aSAH) is a devastating disease with high morbidity and mortality rates. Within 24 hours after aSAH, monocytes are recruited and enter the subarachnoid space, where they mature into macrophages, increasing the inflammatory response and contributing, along with other factors, to delayed neurological dysfunction and poor outcomes. High-density lipoproteins (HDL) are lipid-protein complexes that exert anti-inflammatory effects but under pathological conditions undergo structural alterations that have been associated with loss of functionality. Plasma HDL were isolated from patients with aSAH and analyzed for their anti-inflammatory activity and protein composition. HDL isolated from patients lost the ability to prevent VCAM-1 expression in endothelial cells (HUVEC) and subsequent adhesion of THP-1 monocytes to the endothelium. Proteomic analysis showed that HDL particles from patients had an altered composition compared to those of healthy subjects. We confirmed by western blot that low levels of apolipoprotein A4 (APOA4) and high of serum amyloid A1 (SAA1) in HDL were associated with the lack of anti-inflammatory function observed in aSAH. Our results indicate that the study of HDL in the pathophysiology of aSAH is needed, and functional HDL supplementation could be considered a novel therapeutic approach to the treatment of the inflammatory response after aSAH.


Assuntos
Hemorragia Subaracnóidea , Humanos , Lipoproteínas HDL , Células Endoteliais/patologia , Proteômica , Anti-Inflamatórios , Proteína Amiloide A Sérica
6.
J Nutr ; 142(2): 227-32, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22190030

RESUMO

The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.


Assuntos
Lipoproteínas/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Receptores de Lipoproteínas/metabolismo , Triglicerídeos/metabolismo , Linhagem Celular , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Lipoproteínas/química , PPAR alfa/metabolismo , PPAR gama/metabolismo , Período Pós-Prandial , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores de Lipoproteínas/genética , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Triglicerídeos/química
7.
Food Chem (Oxf) ; 5: 100133, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36111060

RESUMO

Chronic administration of a high-fat diet in mice has been established to influence the generation and trafficking of immune cells such as neutrophils in the bone marrow, the dysregulation of which may contribute to a wide range of diseases. However, no studies have tested the hypothesis that a short-term, high-fat diet could early modulate the neutrophil release from bone marrow at fasting and at postprandial in response to a high-fat meal challenge, and that the predominant type of fatty acids in dietary fats could play a role in both context conditions. Based on these premises, we aimed to establish the effects of different fats [butter, enriched in saturated fatty acids (SFAs), olive oil, enriched in monounsaturated fatty acids (MUFAs), and olive oil supplemented with eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids] on neutrophil navigation from bone marrow to blood in mice. The analysis of cellular models for mechanistic understanding and of postprandial blood samples from healthy volunteers for translational purposes was assessed. The results revealed a powerful effect of dietary SFAs in promotion the neutrophil traffic from bone marrow to blood via the CXCL2-CXCR2 axis. Dietary SFAs, but not MUFAs or EPA and DHA, were also associated with increased neutrophil apoptosis and bone marrow inflammation. Similar dietary fatty-acid-induced postprandial neutrophilia was observed in otherwise healthy humans. Therefore, dietary MUFAs might preserve bone marrow health and proper migration of bone marrow neutrophils early in the course of high-fat diets even after the intake of high-fat meals.

8.
Nutrients ; 13(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809504

RESUMO

Cardiovascular disease (CVD) is the leading cause of global mortality and the study of high-density lipoproteins (HDL) particle composition and functionality has become a matter of high interest, particularly in light to the disappointing clinical data for HDL-cholesterol (HDL-C) raising therapies in CVD secondary prevention and the lack of association between HDL-C and the risk of CVD. Recent evidences suggest that HDL composition and functionality could be modulated by diet. The purpose of this systematic review was to investigate the effect of Mediterranean diet (MD) on changes in HDL structure and functionality in humans. A comprehensive search was conducted in four databases (PubMed, Scopus, Cochrane library and Web of Science) and 13 records were chosen. MD showed favorable effects on HDL functionality, particularly by improving HDL cholesterol efflux capacity and decreasing HDL oxidation. In addition, HDL composition and size were influenced by MD. Thus, MD is a protective factor against CVD associated with the improvement of HDL quality and the prevention of HDL dysfunctionality.


Assuntos
Dieta Mediterrânea , Lipoproteínas HDL/sangue , Humanos , Lipoproteínas HDL/metabolismo
9.
Sci Rep ; 11(1): 8250, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859314

RESUMO

Dietary fatty acids play a role in the pathogenesis of obesity-associated non-alcoholic fatty liver disease (NAFLD), which is associated with insulin resistance (IR). Fatty acid composition is critical for IR and subsequent NAFLD development. Extra-virgin olive oil (EVOO) is the main source of monounsaturated fatty acids (MUFA) in Mediterranean diets. This study examined whether EVOO-containing high fat diets may prevent diet-induced NAFLD using Ldlr-/-. Leiden mice. In female Ldlr-/-.Leiden mice, the effects of the following high fat diets (HFDs) were examined: a lard-based HFD (HFD-L); an EVOO-based HFD (HFD-EVOO); a phenolic compounds-rich EVOO HFD (HFD-OL). We studied changes in body weight (BW), lipid profile, transaminases, glucose homeostasis, liver pathology and transcriptome. Both EVOO diets reduced body weight (BW) and improved insulin sensitivity. The EVOOs did not improve transaminase values and increased LDL-cholesterol and liver collagen content. EVOOs and HFD-L groups had comparable liver steatosis. The profibrotic effects were substantiated by an up-regulation of gene transcripts related to glutathione metabolism, chemokine signaling and NF-kappa-B activation and down-regulation of genes relevant for fatty acid metabolism. Collectivelly, EVOO intake improved weight gain and insulin sensitivity but not liver inflammation and fibrosis, which was supported by changes in hepatic genes expression.


Assuntos
Peso Corporal/efeitos dos fármacos , Resistência à Insulina , Obesidade/dietoterapia , Azeite de Oliva/farmacologia , Receptores de LDL/genética , Animais , Dieta Hiperlipídica , Dieta Mediterrânea , Feminino , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/complicações , Obesidade/genética , Obesidade/metabolismo
10.
J Clin Med ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708891

RESUMO

Modifications in high-density lipoprotein (HDL) particle sizes and HDL-binding proteins have been reported in stroke patients. We evaluated whether the lipoprotein profile, HDL composition and functionality were altered in stroke patients according to their clinical outcome using the modified Rankin Score at 3 months. Plasma samples were obtained from stroke patients treated with intravenous thrombolysis. Levels of cardiovascular and inflammatory markers in plasma were measured using the Human CVD Panel 1 (Milliplex® MAP). Lipoprotein subfractions from plasma were quantified by non-denaturing acrylamide gel electrophoresis, using the Lipoprint®-System (Quantimetrix®), and HDLs were isolated by ultracentrifugation. Relative amounts of paraoxonase-1 (PON1) and alpha-1 anti-trypsin (AAT) in the isolated HDLs were determined by Western blot. HDL anti-inflammatory function was evaluated in human blood-brain barrier endothelial cells stimulated with 100 ng/mL TNFα, and HDL antioxidant function was evaluated via their capacity to limit copper-induced low-density lipoprotein oxidation. Stroke patients with unfavorable outcomes had a lower proportion of small-sized HDLs and increased plasma levels of E-selectin (SELE) and the intercellular adhesion molecule 1 (ICAM1). HDLs from patients with unfavorable outcomes had lower levels of PON1 and displayed a blunted capacity to reduce the expression of SELE, interleukin 8 (IL8) and the monocyte chemoattractant protein-1 (MCP1) mRNA induced by TNFα in endothelial cells. These HDLs also had a reduced antioxidant capacity relative to HDLs from healthy donors. In conclusion, an increased ratio of large/small HDLs with impaired anti-inflammatory and antioxidant capacities was associated with unfavorable outcomes in stroke patients. Alteration of HDL functionality was mainly associated with a low amount of PON1 and high amount of AAT.

11.
Food Funct ; 11(4): 2943-2952, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32267269

RESUMO

Bioactive peptides are related to the prevention and treatment of many diseases. GPETAFLR is an octapeptide that has been isolated from lupine (Lupinus angustifolius L.) and shows anti-inflammatory properties. The aim of this study was to evaluate the potential activity of GPETAFLR to prevent non-alcoholic fatty liver disease (NAFLD) in high-fat-diet (HFD)-induced obese mice. C57BL/6J mice were fed a standard diet or HFD. Two of the groups fed the HFD diet were treated with GPETAFLR in drinking water at 0.5 mg kg-1 day-1 or 1 mg kg-1 day-1. To determine the ability of GPETAFLR to improve the onset and progression of non-alcoholic fatty liver disease, histological studies, hepatic enzyme profiles, inflammatory cytokine and lipid metabolism-related genes and proteins were analysed. Our results suggested that HFD-induced inflammatory metabolic disorders were alleviated by treatment with GPETAFLR. In conclusion, dietary lupine consumption can repair HFD-induced hepatic damage possibly via modifications of liver's lipid signalling pathways.


Assuntos
Anti-Inflamatórios/efeitos adversos , Dieta Hiperlipídica , Lupinus , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade , Extratos Vegetais/administração & dosagem , Administração Oral , Animais , Modelos Animais de Doenças , Alimento Funcional , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória
12.
Sci Rep ; 9(1): 11311, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31383924

RESUMO

Dietary composition plays an important role in the pathophysiology of type 2 diabetes. Monounsaturated fatty acid consumption has been positively associated with improved insulin sensitivity and ß-cell function. We examined whether an extra virgin olive oil (EVOO) high fat diet (HFD) can improve glucose homeostasis. C57BL/6J mice were fed a standard diet or a lard-based HFD to induce type 2 diabetes. Then, HFD mice were fed with three different based HFD (lard, EVOO and EVOO rich in phenolic compounds) for 24 weeks. HFD-EVOO diets significantly improved glycemia, insulinemia, glucose tolerance, insulin sensitivity and insulin degradation. Moreover, EVOO diets reduced ß-cell apoptosis, increased ß-cell number and normalized islet glucose metabolism and glucose induced insulin secretion. No additional effects were observed by higher levels of phenolic compounds. Thus, EVOO intake regulated glucose homeostasis by improving insulin sensitivity and pancreatic ß-cell function, in a type 2 diabetes HFD animal model.


Assuntos
Diabetes Mellitus Tipo 2/dietoterapia , Dieta Hiperlipídica/métodos , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Azeite de Oliva/uso terapêutico , Animais , Glicemia/metabolismo , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Masculino , Camundongos Endogâmicos C57BL
14.
Mol Nutr Food Res ; 62(13): e1800295, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29763526

RESUMO

SCOPE: The present study investigates the effect of olive oils with different phenolic content in high-fat diets (HFDs) on hypertrophy and inflammation in adipose tissue and associated atherosclerosis, in the context of obesity. METHODS AND RESULTS: Ldlr-/-.Leiden mice were fed three different HFDs for 32 weeks and were compared with mice fed the standard low-fat diet (LFD). The different fats provided in the HFDs were lard (HFD-L), extra-virgin olive oil (EVOO; 79 mg kg-1 of phenolic compounds, HFD-EVOO), or EVOO rich in phenolic compounds (OL, 444 mg kg-1 of phenolic compounds, HFD-OL). All HFD-fed mice became obese, but only HFD-L-induced adipocyte hypertrophy. HFD-EVOO mice exhibited the greatest levels of Adiponectin in adipose tissue and presented atherosclerotic lesions similar to the LFD group, with a very low count of monocyte/macrophage compared with HFD-L and HFD-OL mice. Enrichment of the phenolic content of olive oil reduced the secretion of nitrites/nitrates in the aorta, but atherosclerosis was not attenuated in HFD-OL mice compared to other HFD mice. CONCLUSION: Consumption of olive oil with a natural content of phenolic compounds attenuates adipose tissue hypertrophy and inflammation and exerts antiatherosclerotic effects in mice. A higher phenolic content of olive oil did not provide further benefits in the prevention of atherosclerosis.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Aterosclerose/prevenção & controle , Azeite de Oliva/farmacologia , Fenóis/análise , Receptores de LDL/fisiologia , Adipócitos/fisiologia , Tecido Adiposo Branco/patologia , Animais , Antioxidantes/farmacologia , Dieta Hiperlipídica , Feminino , Mediadores da Inflamação/análise , Camundongos , Óxido Nítrico Sintase Tipo II/fisiologia , Azeite de Oliva/análise
15.
Mol Nutr Food Res ; 61(3)2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27749006

RESUMO

SCOPE: We evaluated the protective effect of extra virgin olive oil (EVOO) in high-fat diets (HFDs) on the inflammatory response and liver damage in a nonalcoholic fatty liver disease (NAFLD) mouse model. METHODS AND RESULTS: C57BL/6J mice were fed a standard diet or a lard-based HFD (HFD-L) for 12 wk to develop NAFLD. HFD-fed mice were then divided into four groups and fed for 24 wk with the following: HFD-L, HFD-EVOO, HFD based on phenolics-rich EVOO, and reversion (standard diet). HFD-L-induced metabolic disorders were alleviated by replacement of lard with EVOO. EVOO diets improved plasma lipid profile and reduced body weight, plasma and epididymal fat INF-γ, IL-6 and leptin levels, and macrophage infiltration. Moreover, NAFLD activity scores were reduced. The liver lipid composition showed an increase in MUFAs, especially oleic acid, and a decrease in saturated fatty acids. Hepatic adiponutrin and Cd36 gene expression was upregulated in the EVOO groups. Liver ingenuity pathway analysis revealed in EVOO groups regulation of proteins involved in lipid metabolism, small molecule biochemistry, gastrointestinal disease, and liver regeneration. CONCLUSION: Dietary EVOO could repair HFD-induced hepatic damage, possibly via an anti-inflammatory effect in adipose tissue and modifications in the liver lipid composition and signaling pathways.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Azeite de Oliva/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Peso Corporal/efeitos dos fármacos , Citocinas/metabolismo , Dieta Ocidental/efeitos adversos , Regulação da Expressão Gênica , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Tamanho do Órgão/efeitos dos fármacos , Fosfolipases A2 Independentes de Cálcio/genética
16.
Mol Nutr Food Res ; 61(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28322000

RESUMO

SCOPE: Postprandial triglyceride-rich lipoproteins (TRLs) promote atherosclerosis. Recent research points the bone marrow (BM) as a primary site in atherosclerosis. We elucidated how the acute administration of monounsaturated fatty acids (MUFAs) MUFAs, omega-3 polyunsaturated fatty acids (PUFAs) PUFAs and saturated fatty acids (SFAs) affects human circulating and murine BM neutrophil lipid accumulation and functionality. METHODS AND RESULTS: Postprandial hypertriglyceridemia was induced in healthy subjects and Apoe-/- mice by the acute administration of dietary fats enriched in MUFAs, PUFAs, or SFAs. Postprandial hypertriglyceridemia increased apolipoprotein-B48 receptor (ApoB48R) transcriptional activity that was linearly correlated with intracellular triglycerides (TGs) TGs accumulation in human circulating and murine BM neutrophils. MUFA and omega-3 PUFAs attenuated ApoB48R gene expression and intracellular TG accumulation compared to SFAs. TRLs induced apoB48R-dependent TG accumulation in human neutrophils ex vivo. Murine BM neutrophils showed a decrease in surface L-selectin and an increase in TNF-α and IL-1ß mRNA expressions only after SFAs administration. TRLs enriched in SFAs induced BM neutrophil degranulation ex vivo suggesting cell priming/activation. CONCLUSION: Postprandial TRLs disrupts the normal biology and function of circulating and BM neutrophils. MUFA- and omega-3 PUFA-rich dietary fats such as virgin olive oil or fish oil has the potential to prevent excessive neutrophil lipid accumulation and activation by targeting the fatty acid composition of TRLs.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos , Lipoproteínas/fisiologia , Neutrófilos/metabolismo , Período Pós-Prandial , Receptores de Lipoproteínas/genética , Triglicerídeos/fisiologia , Adulto , Animais , Células da Medula Óssea/metabolismo , Ácidos Graxos/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica
17.
J Nutr Biochem ; 26(4): 327-36, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595097

RESUMO

Lipid accumulation in macrophages contributes to atherosclerosis. Within macrophages, lipids are stored in lipid droplets (LDs); perilipin-2 and perilipin-3 are the main LD-associated proteins. Postprandial triglyceride (TG)-rich lipoproteins induce LD accumulation in macrophages. The role of postprandial lipoproteins in perilipin-2 and perilipin-3 regulation was studied. TG-rich lipoproteins (TRLs) induced the levels of intracellular TGs, LDs and perilipin-2 protein expression in THP-1 macrophages and in Apoe(-/-) mice bone-marrow-derived macrophages with low and high basal levels of TGs. Perilipin-3 was only synthesized in mice macrophages with low basal levels of TGs. The regulation was dependent on the fatty acid composition of the lipoproteins; monounsaturated and polyunsaturated fatty acids (PUFAs) more strongly attenuated these effects compared with saturated fatty acids. In THP-1 macrophages, immunofluorescence microscopy and freeze-fracture immunogold labeling indicated that the lipoproteins translocated perilipin-3 from the cytoplasm to the LD surface; only the lipoproteins that were rich in PUFAs suppressed this effect. Chemical inhibition showed that lipoproteins induced perilipin-2 protein expression through the peroxisome proliferator-activated nuclear receptor (PPAR) PPARα and PPARγ pathways. Overall, our data indicate that postprandial TRLs may be involved in atherosclerotic plaque formation through the regulation of perilipin-2 and perilipin-3 proteins in macrophages. Because the fatty acid composition of the lipoproteins is dependent on the type of fat consumed, the ingestion of olive oil, which is rich in monounsaturated fatty acids, and fish oil, which is rich in omega-3 fatty acids, can be considered a good nutritional strategy to reduce the risk of atherosclerosis by LD-associated proteins decrease.


Assuntos
Proteínas de Transporte/metabolismo , Lipoproteínas/sangue , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Período Pós-Prandial , Triglicerídeos/sangue , Adulto , Animais , Manteiga , Proteínas de Transporte/genética , Linhagem Celular , Estudos Cross-Over , Ácidos Graxos/administração & dosagem , Ácidos Graxos/sangue , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Monoinsaturados/sangue , Ácidos Graxos Insaturados/administração & dosagem , Ácidos Graxos Insaturados/sangue , Óleos de Peixe/administração & dosagem , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Azeite de Oliva/administração & dosagem , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , Perilipina-2 , Perilipina-3 , Adulto Jovem
18.
Food Funct ; 5(7): 1374-80, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-24752559

RESUMO

Dietary fatty acids play a role in glucose homeostasis. The aim of this study was to assess the individual relationship between dietary saturated (SFA), monounsaturated (MUFA) and polyunsaturated (PUFA) fatty acids with postprandial ß-cell function and insulin sensitivity in subjects with normal and high fasting triglycerides. We assessed postprandial ß-cell function (by the insulinogenic index and the ratio of the insulin to glucose areas under the time-concentration curve) and insulin sensitivity (by the oral glucose and the minimal model insulin sensitivity indices) over four nonconsecutive, randomly assigned, high-fat meals containing a panel of SFA (palmitic and stearic acids), MUFA (palmitoleic and oleic acids) and PUFA (linoleic and α-linolenic acids) in 14 subjects with normal and in 14 subjects with high fasting triglycerides. The proportions of each fatty acid in the meals and the values for surrogate measures of postprandial ß-cell function and insulin sensitivity were subjected to a Pearson correlation and hierarchical cluster analysis, which revealed two classes of dietary fatty acids for regulating postprandial glucose homeostasis. We successfully discriminated the adverse effects of SFA palmitic acid from the beneficial effects of MUFA oleic acid on postprandial ß-cell function (r ≥ 0.84 for SFA palmitic acid and r ≥ -0.71 for MUFA oleic acid; P < 0.05) and insulin sensitivity (r ≥ -0.92 for SFA palmitic acid and r ≥ 0.89 for MUFA oleic acid; P < 0.001) both in subjects with normal and high fasting triglycerides. In conclusion, dietary MUFA oleic acid, in contrast to SFA palmitic acid, favours the tuning towards better postprandial glycaemic control in subjects with normal and high fasting triglycerides.


Assuntos
Gorduras na Dieta/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Insulina/metabolismo , Ácido Oleico/administração & dosagem , Ácido Palmítico/administração & dosagem , Adulto , Glicemia/metabolismo , Índice de Massa Corporal , Análise por Conglomerados , Diabetes Mellitus Tipo 2/sangue , Dieta , Voluntários Saudáveis , Humanos , Hiperlipoproteinemias/sangue , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Refeições , Período Pós-Prandial , Triglicerídeos/sangue
19.
Mol Nutr Food Res ; 58(6): 1349-64, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24668798

RESUMO

SCOPE: The aim was to investigate the effect of postprandial triglyceride-rich lipoproteins (TRLs) with different fatty acid compositions on human coronary artery smooth muscle cell (hCASMC) invasion and to identify the molecular pathways involved. METHODS AND RESULTS: TRLs were isolated from the plasma of healthy volunteers after the ingestion of single meals enriched in MUFAs, saturated fatty acids (SFAs), or PUFAs. hCASMC invasion was analyzed using transwell chambers with Matrigel. TRLs-SFAs provoked the highest invasion, followed by TRLs-MUFAs and TRLs-PUFAs. Inhibition studies with Orlistat showed that invasion was dependent on the fatty acid composition of the TRLs. Fatty acids incorporated into the cell membranes strongly associated with cell invasion. Pull-down assays showed that TRLs-SFAs were able to increase Rac1 activity via inhibition of RhoA-dependent signaling. Chemical inhibition and siRNA studies showed that Rac1, PI3k, JNK, and MMP2 regulates TRL-SFA-induced hCASMC invasion. CONCLUSION: We demonstrate for the first time that TRLs induce hCASMCs invasion in a fatty acid dependent manner. This effect in TRLs-SFAs is mediated by the PI3k-Rac1-JNK, RhoA, and Rac1-MMP2 pathways. The ingestion of MUFA, compared to other dietary fatty acids such as SFA, could be considered as a nutritional strategy to reduce the atherosclerotic plaque formation.


Assuntos
Vasos Coronários/citologia , Lipoproteínas/sangue , Miócitos de Músculo Liso/efeitos dos fármacos , Período Pós-Prandial/efeitos dos fármacos , Triglicerídeos/sangue , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Células Cultivadas , Criança , Gorduras na Dieta/administração & dosagem , Ácidos Graxos/administração & dosagem , Ácidos Graxos Monoinsaturados/administração & dosagem , Ácidos Graxos Insaturados/administração & dosagem , Feminino , Voluntários Saudáveis , Humanos , Modelos Lineares , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Período Pós-Prandial/fisiologia , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
20.
J Nutr Biochem ; 24(12): 2031-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24231096

RESUMO

Intestinally produced triglyceride-rich lipoproteins (TRL) play an important role in the progression of atherosclerosis. In this study, we investigated the relevance of monounsaturated fatty acid (MUFA) and saturated fatty acid (SFA) in postprandial TRL in affecting the transcriptional activity of the apolipoprotein-B48 receptor (ApoB48R) and its functionality in human monocyte/macrophage cells. Healthy male volunteers were administered four standardized high-fat meals containing butter, high-palmitic sunflower oil, olive oil (ROO) or a mixture of vegetable and fish oils (50 g/m(2) body surface area) to obtain a panel of postprandial TRL with gradual MUFA oleic acid-to-SFA palmitic acid ratios. The increase in this ratio was linearly associated with a decrease of ApoB48R up-regulation and lipid accumulation in THP-1 and primary monocytes. ApoB48R mRNA levels and intracellular triglycerides were also lower in the monocytes from volunteers after the ingestion of the ROO meal when compared to the ingestion of the butter meal. In THP-1 macrophages, the increase in the MUFA oleic acid-to-SFA palmitic acid ratio in the postprandial TRL was linearly correlated with an increase in ApoB48R down-regulation and a decrease in lipid accumulation. We also revealed that the nuclear receptor transcription factors PPARα, PPARß/δ, and PPARγ and the PPAR-RXR transcriptional complex were involved in sensing the proportion of MUFA oleic acid and SFA palmitic acid, and these were also involved in adjusting the transcriptional activity of ApoB48R. The results of this study support the notion that MUFA-rich dietary fats may prevent excessive lipid accumulation in monocyte/macrophage cells by targeting the postprandial TRL/ApoB48R axis.


Assuntos
Gorduras na Dieta/administração & dosagem , Macrófagos/metabolismo , Monócitos/metabolismo , Período Pós-Prandial , Receptores de Lipoproteínas/sangue , Adulto , Manteiga , Linhagem Celular , Estudos Cross-Over , Regulação para Baixo , Ácidos Graxos Monoinsaturados/administração & dosagem , Óleos de Peixe/administração & dosagem , Voluntários Saudáveis , Humanos , Lipoproteínas/sangue , Masculino , Ácido Oleico/administração & dosagem , Azeite de Oliva , Ácido Palmítico/administração & dosagem , Receptores Ativados por Proliferador de Peroxissomo/genética , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Óleos de Plantas/administração & dosagem , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptores de Lipoproteínas/genética , Óleo de Girassol , Triglicerídeos/sangue , Regulação para Cima , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA