Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nano Lett ; 23(21): 9832-9840, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37870305

RESUMO

On-surface synthesis has paved the way toward the fabrication and characterization of conjugated carbon-based molecular materials that exhibit π-magnetism such as triangulenes. Aza-triangulene, a nitrogen-substituted derivative, was recently shown to display rich on-surface chemistry, offering an ideal platform to investigate structure-property relations regarding spin-selective charge transfer and magnetic fingerprints. Herein, we study electronic changes upon fusion of single molecules into larger dimeric derivatives. We show that the closed-shell structure of aza-triangulene on Ag(111) leads to closed-shell dimers covalently coupled through sterically accessible carbon atoms. Meanwhile, its open-shell structure on Au(111) leads to coupling via atoms displaying a high spin density, resulting in symmetric or asymmetric products. Interestingly, whereas all dimers on Au(111) exhibit similar charge transfer properties, only asymmetric ones show magnetic fingerprints due to spin-selective charge transfer. These results expose clear relationships among molecular symmetry, charge transfer, and spin states of π-conjugated carbon-based nanostructures.

2.
J Am Chem Soc ; 145(16): 8988-8995, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-36988648

RESUMO

Recent advances on surface-assisted synthesis have demonstrated that arrays of nanometer wide graphene nanoribbons can be laterally coupled with atomic precision to give rise to a highly anisotropic nanoporous graphene structure. Electronically, this graphene nanoarchitecture can be conceived as a set of weakly coupled semiconducting 1D nanochannels with electron propagation characterized by substantial interchannel quantum interferences. Here, we report the synthesis of a new nanoporous graphene structure where the interribbon electronic coupling can be controlled by the different degrees of freedom provided by phenylene bridges that couple the conducting channels. This versatility arises from the multiplicity of phenylene cross-coupling configurations, which provides a robust chemical knob, and from the interphenyl twist angle that acts as a fine-tunable knob. The twist angle is significantly altered by the interaction with the substrate, as confirmed by a combined bond-resolved scanning tunneling microscopy (STM) and ab initio analysis, and should accordingly be addressable by other external stimuli. Electron propagation simulations demonstrate the capability of either switching on/off or modulating the interribbon coupling by the corresponding use of the chemical or the conformational knob. Molecular bridges therefore emerge as efficient tools to engineer quantum transport and anisotropy in carbon-based 2D nanoarchitectures.

3.
Arch Microbiol ; 206(1): 7, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38017151

RESUMO

The marine bacteria of the Vibrionaceae family are significant from the point of view of their role in the marine geochemical cycle, as well as symbionts and opportunistic pathogens of aquatic animals and humans. The well-known pathogens of this group, Vibrio cholerae, V. parahaemolyticus, and V. vulnificus, are responsible for significant morbidity and mortality associated with a range of infections from gastroenteritis to bacteremia acquired through the consumption of raw or undercooked seafood and exposure to seawater containing these pathogens. Although generally regarded as susceptible to commonly employed antibiotics, the antimicrobial resistance of Vibrio spp. has been on the rise in the last two decades, which has raised concern about future infections by these bacteria becoming increasingly challenging to treat. Diverse mechanisms of antimicrobial resistance have been discovered in pathogenic vibrios, the most important being the membrane efflux pumps, which contribute to antimicrobial resistance and their virulence, environmental fitness, and persistence through biofilm formation and quorum sensing. In this review, we discuss the evolution of antimicrobial resistance in pathogenic vibrios and some of the well-characterized efflux pumps' contributions to the physiology of antimicrobial resistance, host and environment survival, and their pathogenicity.


Assuntos
Vibrio cholerae , Vibrio parahaemolyticus , Vibrio , Vibrionaceae , Animais , Humanos , Antibacterianos/farmacologia , Vibrionaceae/genética , Farmacorresistência Bacteriana
4.
Nano Lett ; 22(1): 164-171, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34936370

RESUMO

Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.

5.
Angew Chem Int Ed Engl ; 62(41): e202307884, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37604782

RESUMO

Triangulenes are a class of open-shell triangular graphene flakes with total spin increasing with their size. In the last years, on-surface-synthesis strategies have permitted fabricating and engineering triangulenes of various sizes and structures with atomic precision. However, direct proof of the increasing total spin with their size remains elusive. In this work, we report the combined in-solution and on-surface synthesis of a large nitrogen-doped triangulene (aza-[5]-triangulene) on a Au(111) surface, and the detection of its high-spin ground state. Bond-resolved scanning tunneling microscopy images uncovered radical states distributed along the zigzag edges, which were detected as weak zero-bias resonances in scanning tunneling spectra. These spectral features reveal the partial Kondo screening of a high-spin state. Through a combination of several simulation tools, we find that the observed distribution of radical states is explained by a quintet ground state (S=2), instead of the quartet state (S=3/2) expected for the neutral species. This confirms that electron transfer to the metal substrate raises the spin of the ground state. We further provide a qualitative description of the change of (anti)aromaticity introduced by N-substitution, and its role in the charge stabilization on a surface, resulting in an S=2 aza-triangulene on Au(111).

6.
J Am Chem Soc ; 144(10): 4522-4529, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254059

RESUMO

Nitrogen heteroatom doping into a triangulene molecule allows tuning its magnetic state. However, the synthesis of the nitrogen-doped triangulene (aza-triangulene) has been challenging. Herein, we report the successful synthesis of aza-triangulene on the Au(111) and Ag(111) surfaces, along with their characterizations by scanning tunneling microscopy and spectroscopy in combination with density functional theory (DFT) calculations. Aza-triangulenes were obtained by reducing ketone-substituted precursors. Exposure to atomic hydrogen followed by thermal annealing and, when necessary, manipulations with the scanning probe afforded the target product. We demonstrate that on Au(111), aza-triangulene donates an electron to the substrate and exhibits an open-shell triplet ground state. This is derived from the different Kondo resonances of the final aza-triangulene product and a series of intermediates on Au(111). Experimentally mapped molecular orbitals match with DFT-calculated counterparts for a positively charged aza-triangulene. In contrast, aza-triangulene on Ag(111) receives an extra electron from the substrate and displays a closed-shell character. Our study reveals the electronic properties of aza-triangulene on different metal surfaces and offers an approach for the fabrication of new hydrocarbon structures, including reactive open-shell molecules.


Assuntos
Eletrônica , Ouro , Elétrons , Ouro/química , Nitrogênio/química , Propriedades de Superfície
7.
Entropy (Basel) ; 24(4)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35455174

RESUMO

Body temperature is usually employed in clinical practice by strict binary thresholding, aiming to classify patients as having fever or not. In the last years, other approaches based on the continuous analysis of body temperature time series have emerged. These are not only based on absolute thresholds but also on patterns and temporal dynamics of these time series, thus providing promising tools for early diagnosis. The present study applies three time series entropy calculation methods (Slope Entropy, Approximate Entropy, and Sample Entropy) to body temperature records of patients with bacterial infections and other causes of fever in search of possible differences that could be exploited for automatic classification. In the comparative analysis, Slope Entropy proved to be a stable and robust method that could bring higher sensitivity to the realm of entropy tools applied in this context of clinical thermometry. This method was able to find statistically significant differences between the two classes analyzed in all experiments, with sensitivity and specificity above 70% in most cases.

8.
Phys Rev Lett ; 124(17): 177201, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32412280

RESUMO

Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.

9.
Diabetes Metab Res Rev ; 36(4): e3287, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31916665

RESUMO

BACKGROUND: The endoscopically implanted duodenal-jejunal bypass liner (DJBL) is an attractive alternative to bariatric surgery for obese diabetic patients. This article aims to study dynamical aspects of the glycaemic profile that may influence DJBL effects. METHODS: Thirty patients underwent DJBL implantation and were followed for 10 months. Continuous glucose monitoring (CGM) was performed before implantation and at month 10. Dynamical variables from CGM were measured: coefficient of variation of glycaemia, mean amplitude of glycaemic excursions (MAGE), detrended fluctuation analysis (DFA), % of time with glycaemia under 6.1 mmol/L (TU6.1), area over 7.8 mmol/L (AO7.8) and time in range. We analysed the correlation between changes in both anthropometric (body mass index, BMI and waist circumference) and metabolic (fasting blood glucose, FBG and HbA1c) variables and dynamical CGM-derived metrics and searched for variables in the basal CGM that could predict successful outcomes. RESULTS: There was a poor correlation between anthropometric and metabolic outcomes. There was a strong correlation between anthropometric changes and changes in glycaemic tonic control (∆BMI-∆TU6.1: rho = - 0.67, P < .01) and between metabolic outcomes and glycaemic phasic control (∆FBG-∆AO7.8: r = .60, P < .01). Basal AO7.8 was a powerful predictor of successful metabolic outcome (0.85 in patients with AO7.8 above the median vs 0.31 in patients with AO7.8 below the median: Chi-squared = 5.67, P = .02). CONCLUSIONS: In our population, anthropometric outcomes of DJBL correlate with improvement in tonic control of glycaemia, while metabolic outcomes correlate preferentially with improvement in phasic control. Assessment of basal phasic control may help in candidate profiling for DJBL implantation.


Assuntos
Diabetes Mellitus Tipo 2/cirurgia , Duodeno/cirurgia , Derivação Gástrica/métodos , Jejuno/cirurgia , Síndrome Metabólica/prevenção & controle , Obesidade Mórbida/cirurgia , Adulto , Idoso , Biomarcadores/análise , Glicemia/análise , Diabetes Mellitus Tipo 2/complicações , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Masculino , Síndrome Metabólica/etiologia , Pessoa de Meia-Idade , Obesidade Mórbida/fisiopatologia , Prognóstico , Redução de Peso
10.
Chemphyschem ; 20(18): 2305-2310, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31328365

RESUMO

Within the collection of surface-supported reactions currently accessible for the production of extended molecular nanostructures under ultra-high vacuum, Ullmann coupling has been the most successful in the controlled formation of covalent single C-C bonds. Particularly advanced control of this synthetic tool has been obtained by means of hierarchical reactivity, commonly achieved by the use of different halogen atoms that consequently display distinct activation temperatures. Here we report on the site-selective reactivity of certain carbon-halogen bonds. We use precursor molecules halogenated with bromine atoms at two non-equivalent carbon atoms and found that the Ullmann coupling occurs on Au(111) with a remarkable predilection for one of the positions. Experimental evidence is provided by means of scanning tunneling microscopy and core level photoemission spectroscopy, and a rationalized understanding of the observed preference is obtained from density functional theory calculations.

11.
Nano Lett ; 18(1): 418-423, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29232951

RESUMO

Large aromatic carbon nanostructures are cornerstone materials due to their increasingly active role in functional devices, but their synthesis in solution encounters size and shape limitations. New on-surface strategies facilitate the synthesis of large and insoluble planar systems with atomic-scale precision. While dehydrogenation is usually the chemical zipping reaction building up large aromatic carbon structures, mostly benzenoid structures are being produced. Here, we report on a new cyclodehydrogenation reaction transforming a sterically stressed precursor with conjoined cove regions into a planar carbon platform by incorporating azulene moieties in their interior. Submolecular resolution STM is used to characterize this exotic large polycyclic aromatic compound on Au(111) yielding unprecedented insight into a dehydrogenative intramolecular aryl-aryl coupling reaction. The resulting polycyclic aromatic carbon structure shows a [18]annulene core hosting peculiar pore states confined at the carbon cavity.

12.
Diabetes Metab Res Rev ; 34(5): e3002, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516622

RESUMO

AIM: Type 2 diabetes mellitus (T2DM) is preceded by a period of impaired glucoregulation. We investigated if continuous glucose monitoring system (CGMS) (1) could improve our capacity to predict the development of T2DM in subjects at risk. (2) Find out if impaired fasting glucose/impaired glucose tolerance differentiation through CGMS would also elucidate differences in clinical phenotypes. MATERIAL AND METHODS: Observational study of 209 hypertensive patients, aged 18 to 85 years who wore at entry a CGMS. Two CGMS metrics, percent of time under the 100 mg/dL glycaemic threshold (TU100) (impaired fasting glucose surrogate phenotype) and area above the 140 mg/dL glycemic threshold (AO140) (impaired glucose tolerance surrogate phenotype) were measured. The median follow-up was 32 months (6-72 mo), and there were 17 new cases of T2DM. RESULTS: In a multivariate Cox proportional hazard survival analysis including the conventional prediabetes-defining criteria and the 2 CGMS-derived variables, only TU100 and HbA1c were significant and independent variables in predicting T2DM development. An increase in 0.1 in TU100 resulted in a 0.69 (95% CI, 0.54-0.88; P < .01) odds ratio of developing T2DM. With cut-off points of 0.5 for TU100 and 5.7% for HbA1c , the test "TU < 0.5 and HbA1c  > 5.7%" had a sensitivity of 0.81 (SD, 0.10), a specificity of 0.83 (SD, 0.03), and a likelihood ratio of 4.82 (SD, 1.03) for T2DM development. CONCLUSIONS: Continuous glucose monitoring system allows for a better T2DM risk-development categorization than fasting glucose and HbA1c in a high-risk population. Continuous glucose monitoring system-derived phenotyping reveals clinical differences, not disclosed by conventional fasting plasma glucose/HbA1c categorization. These differences may correlate with distinct pathophysiological mechanisms.


Assuntos
Biomarcadores/sangue , Automonitorização da Glicemia/métodos , Glicemia/análise , Diabetes Mellitus Tipo 2/diagnóstico , Intolerância à Glucose/diagnóstico , Hipertensão/complicações , Estado Pré-Diabético/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etiologia , Feminino , Seguimentos , Intolerância à Glucose/sangue , Intolerância à Glucose/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estado Pré-Diabético/sangue , Estado Pré-Diabético/etiologia , Prognóstico , Taxa de Sobrevida , Adulto Jovem
13.
Chemistry ; 24(67): 17697-17700, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30324668

RESUMO

The synthesis of a threefold symmetric nanographene with 19 cata-fused benzene rings distributed within six branches is reported. This flat dendritic starphene, which is the largest unsubstituted cata-condensed PAH that has been obtained to date, was prepared in solution by means of a palladium-catalyzed aryne cyclotrimerization reaction and it was characterized on surface by scanning probe microscopy with atomic resolution.

14.
Diabetes Metab Res Rev ; 33(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27253149

RESUMO

BACKGROUND: Complexity analysis of glucose profile may provide valuable information about the gluco-regulatory system. We hypothesized that a complexity metric (detrended fluctuation analysis, DFA) may have a prognostic value for the development of type 2 diabetes in patients at risk. METHODS: A total of 206 patients with any of the following risk factors (1) essential hypertension, (2) obesity or (3) a first-degree relative with a diagnosis of diabetes were included in a survival analysis study for a diagnosis of new onset type 2 diabetes. At inclusion, a glucometry by means of a Continuous Glucose Monitoring System was performed, and DFA was calculated for a 24-h glucose time series. Patients were then followed up every 6 months, controlling for the development of diabetes. RESULTS: In a median follow-up of 18 months, there were 18 new cases of diabetes (58.5 cases/1000 patient-years). DFA was a significant predictor for the development of diabetes, with ten events in the highest quartile versus one in the lowest (log-rank test chi2 = 9, df = 1, p = 0.003), even after adjusting for other relevant clinical and biochemical variables. In a Cox model, the risk of diabetes development increased 2.8 times for every 0.1 DFA units. In a multivariate analysis, only fasting glucose, HbA1c and DFA emerged as significant factors. CONCLUSIONS: Detrended fluctuation analysis significantly performed as a harbinger of type 2 diabetes development in a high-risk population. Complexity analysis may help in targeting patients who could be candidates for intensified treatment. Copyright © 2016 The Authors. Diabetes/Metabolism Research and Reviews Published by John Wiley & Sons Ltd.


Assuntos
Glicemia/análise , Diabetes Mellitus Tipo 2/diagnóstico , Hipertensão/complicações , Monitorização Fisiológica/métodos , Obesidade/complicações , Adulto , Idoso , Idoso de 80 Anos ou mais , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Seguimentos , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , Prevalência , Prognóstico , Fatores de Risco , Espanha/epidemiologia
15.
Arch Microbiol ; 199(8): 1103-1112, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28432381

RESUMO

The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.


Assuntos
Compostos Alílicos/farmacologia , Antibacterianos/farmacologia , Etídio/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Sulfetos/farmacologia , Vibrio cholerae/metabolismo , Cólera/tratamento farmacológico , Cólera/microbiologia , Sinergismo Farmacológico , Alho/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
16.
Arch Microbiol ; 199(3): 465-474, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27830269

RESUMO

Staphylococcus aureus is a serious causative agent of infectious disease. Multidrug-resistant strains like methicillin-resistant S. aureus compromise treatment efficacy, causing significant morbidity and mortality. Active efflux represents a major antimicrobial resistance mechanism. The proton-driven multidrug efflux pump, LmrS, actively exports structurally distinct antimicrobials. To circumvent resistance and restore clinical efficacy of antibiotics, efflux pump inhibitors are necessary, and natural edible spices like cumin are potential candidates. The mode of cumin antibacterial action and underlying mechanisms behind drug resistance inhibition, however, are unclear. We tested the hypothesis that cumin inhibits LmrS drug transport. We found that cumin inhibited bacterial growth and LmrS ethidium transport in a dosage-dependent manner. We demonstrate that cumin is antibacterial toward a multidrug-resistant host and that resistance modulation involves multidrug efflux inhibition.


Assuntos
Cuminum/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Genes MDR/fisiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Extratos Vegetais/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Etídio/metabolismo , Genes MDR/genética , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
17.
Nonlinear Dynamics Psychol Life Sci ; 19(4): 419-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26375934

RESUMO

Many physiological systems are paradigmatic examples of complex networks, displaying behaviors best studied by means of tools derived from nonlinear dynamics and fractal geometry. Furthermore, while conventional wisdom considers health as an 'orderly' situation (and diseases are often called 'disorders'), truth is that health is characterized by a remarkable (pseudo)-randomness, and the loss of this pseudo-randomness (i.e., the 'decomplex-ification' of the system's output) is one of the earliest signs of the system's dysfunction. The potential clinical uses of this information are evident. However, the instruments used to assess complexity are still under debate, and these tools are just beginning to find their place at the bedside. We present a brief overview of the potential uses of complexity analysis in several areas of clinical medicine. We comment on the metrics most frequently used, and we review specifically their application on certain neurologic diseases, aging, diabetes, febrile diseases and the critically ill patient.


Assuntos
Envelhecimento/fisiologia , Diabetes Mellitus/fisiopatologia , Entropia , Febre/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Dinâmica não Linear , Estado Terminal , Fractais , Humanos
18.
Toxins (Basel) ; 16(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38922174

RESUMO

Despite the fact that the first red tide reported on the coasts of the Iberian Peninsula was due to Lingulodinium polyedra, knowledge about their frequency and, particularly, about the environmental conditions contributing to bloom initiation is still scarce. For this reason, L. polyedra bloom episodes were observed and studied in three Galician rias during the summer season based on the 1993-2008 record database period; additionally, samples were collected in summer 2008. Proliferations of L. polyedra occurred in the rias of Ares and Barqueiro in June and August, respectively, while in the Ria of Coruña, they persisted from the end of June to early September. Red tides developed when the surface temperature reached 17 °C, with "seasonal thermal window" conditions, and when salinities were ≥30, i.e., an "optimal salinity window"; when these parameters were lower than these thresholds, cyst germination decreased. A cyst transport mechanism from sediments to the surface must also exist; this mechanism was found to be natural (tidal currents) in the ria of Barqueiro or anthropogenic (dredging) in the rias of Ares and Coruña. Surface temperatures during summer were usually favorable for cyst germination (85 to 100%) during the 1993-2008 period; however, water temperatures below 10 m depth only rarely reached the 17 °C threshold (2 to 18%). During this 16-year period, dredging activities could explain 71% (Coruña) and 44% (Ares) of the recorded bloom events. When a bloom episode developed in early summer, favorable conditions did not lead to a new red tide, probably due to the lag period required by cysts for germination. Moreover, blooms did not develop when high densities of diatoms (>1,000,000 cells·L-1) remained in the water column as a result of summer upwelling pulses occurring in specific years. The temperature-sediment disturbance pattern found in this study provides a useful tool for the prevention of eventual risks resulting from red tides of this dinoflagellate.


Assuntos
Dinoflagellida , Proliferação Nociva de Algas , Temperatura , Dinoflagellida/crescimento & desenvolvimento , Espanha , Estações do Ano , Monitoramento Ambiental , Água do Mar , Sedimentos Geológicos , Salinidade
19.
ACS Nano ; 18(24): 15898-15904, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38833667

RESUMO

We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).

20.
Small Methods ; 8(1): e2300768, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840449

RESUMO

Despite the impressive advances in the synthesis of atomically precise graphene nanostructures witnessed during the last decade, advancing in compositional complexity faces major challenges. The concept of introducing the desired functional groups or dopants in the molecular precursor often fails due to their lack of stability during the reaction path. Here, a study on the stability of different pyridine and pyrimidine moieties during the on-surface synthesis of graphene nanoribbons on Au(111) is presented. Combining bond-resolved scanning tunneling microscopy with X-ray photoelectron spectroscopy, the thermal evolution of the nitrogen dopants throughout the whole reaction sequence is tracked. A comparative experimental and ab initio electronic characterization confirms the presence of dopants in the final structures, revealing also that the pyridinic nitrogen leads to a significant band downshift. The results demonstrate that, by using synthetic strategies to lower the reaction temperatures, one can preserve specific N-heterocycles throughout all the reaction steps of the synthesis of graphene nanoribbons and beyond the interibbon coupling reaction that leads to nanoporous graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA