Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(10): 3352-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26834003

RESUMO

Carbon-based materials, such as acenes, fullerenes, and graphene nanoribbons, are viewed as the potential successors to silicon in the next generation of electronics. Although a number of methodologies provide access to these materials' all-carbon variants, relatively fewer strategies readily furnish their nitrogen-doped analogues. Herein, we report the rational design, preparation, and characterization of nitrogen-containing rubicenes and tetrabenzopentacenes, which can be viewed either as acene derivatives or as molecular fragments of fullerenes and graphene nanoribbons. The reported findings may prove valuable for the development of electron transporting organic semiconductors and for the eventual construction of larger carbonaceous systems.

2.
Org Lett ; 18(2): 156-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26705096

RESUMO

Graphene nanoribbons (GNRs) are promising candidate materials for the next generation of nanoscale electronics. Described herein is the synthesis of 2,4,6-substituted benzoquinolines, which constitute building blocks for nitrogen-doped GNRs. The presented facile and modular aza-Diels-Alder chemistry accommodates the installation of diverse functionalities at the crowded benzoquinolines' 2 positions. Given the general utility of the benzoquinoline motif, these findings hold relevance not only for carbon-based electronics but also for a range of chemical disciplines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA