Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Nat Prod ; 83(3): 668-674, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-31999116

RESUMO

During investigation of the secondary metabolism of four strains of Penicillium arenicola, two new depsides, arenicolins A (1) and B (2), were isolated and characterized. Their structures were established mainly by analysis of NMR and HRMS data and by comparison with known compounds. These depsides incorporate intriguing structural features, including dual alkyl side chains and a C-glycosyl unit, with 1 also containing an acylated 2-hydroxymethyl-4,5,6-trihydroxycyclohexenone moiety. Although the arenicolins were produced by all strains tested, arenicolin A (1) was obtained using only one of five medium compositions employed, while arenicolin B (2) was produced in all media tested. Neither compound showed antibacterial or antifungal activity, but 1 exhibited cytotoxicity toward mammalian cell lines, including colorectal carcinoma (HCT-116), neuroblastoma (IMR-32), and ductal carcinoma (BT-474), with IC50 values of 7.3, 6.0, and 9.7 µM, respectively.


Assuntos
Antineoplásicos/farmacologia , Depsídeos/farmacologia , Penicillium/química , Antineoplásicos/isolamento & purificação , Produtos Biológicos/química , Linhagem Celular Tumoral , Depsídeos/isolamento & purificação , Glicosilação , Humanos , Estrutura Molecular
2.
Cancers (Basel) ; 14(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35454817

RESUMO

Gastroenteropancreatic neuroendocrine neoplasms (GEP NENs) are rare cancers consisting of neuroendocrine carcinomas (NECs) and neuroendocrine tumors (NETs), which have been increasing in incidence in recent years. Few cell lines and pre-clinical models exist for studying GEP NECs and NETs, limiting the ability to discover novel imaging and treatment modalities. To address this gap, we isolated tumor cells from cryopreserved patient GEP NECs and NETs and injected them into the flanks of immunocompromised mice to establish patient-derived xenograft (PDX) models. Two of six mice developed tumors (NEC913 and NEC1452). Over 80% of NEC913 and NEC1452 tumor cells stained positive for Ki67. NEC913 PDX tumors expressed neuroendocrine markers such as chromogranin A (CgA), synaptophysin (SYP), and somatostatin receptor-2 (SSTR2), whereas NEC1452 PDX tumors did not express SSTR2. Exome sequencing revealed loss of TP53 and RB1 in both NEC tumors. To demonstrate an application of these novel NEC PDX models for SSTR2-targeted peptide imaging, the NEC913 and NEC1452 cells were bilaterally injected into mice. Near infrared-labelled octreotide was administered and the fluorescent signal was specifically observed for the NEC913 SSTR2 positive tumors. These 2 GEP NEC PDX models serve as a valuable resource for GEP NEN therapy testing.

3.
Artigo em Inglês | MEDLINE | ID: mdl-34054189

RESUMO

INTRODUCTION: The clinical need for improved intraoperative tumor visualization has led to the development of targeted contrast agents for fluorescence-guided surgery (FGS). A key characteristic of these agents is their high tumor specificity, which could enable detection of residual lesions that would likely be missed by visual inspection. Here, we examine the utility of a promising somatostatin receptor subtype-2 (SSTR2)-targeted fluorescent agent for detecting residual disease in mouse xenografts using FGS and post-operative histopathological validation. METHODS: Mice (n=2) implanted with SSTR2 overexpressing tumors were injected with 2 nmol of the dual-labeled somatostatin analog, 67Ga-MMC(IR800)-TOC, and tumors were resected 48 h post-injection using traditional white light reflectance and palpation. Tumors underwent gamma counting and histopathology analysis. The wide-field FGS imaging platform (OnLume) was used to evaluate residual disease in situ under ambient light representative of an operating room. RESULTS: The tumor was resected with grossly negative margins using conventional inspection and palpation; however, additional in situ residual disease was found in the tumor cavity using FGS imaging. In situ fluorescent tumor contrast-to-noise ratios (CNRs) were 3.0 and 5.2. Agent accumulation was 7.72 and 8.20 %ID/g in tumors and 0.27 and 0.20 %ID/g in muscle. Fluorescence pixel values and gamma counts were highly correlated (r = 0.95, P < 0.048). H&E and IHC staining confirmed cancer positivity and SSTR2-overexpression, respectively. CONCLUSION: Our findings demonstrate that the use of clinically relevant fluorescence imaging instrumentation enhances the evaluation of promising FGS agents for in situ visualization of residual disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA