Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Brain ; 145(11): 3770-3775, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883251

RESUMO

Cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) is an inherited late-onset neurological disease caused by bi-allelic AAGGG pentanucleotide expansions within intron 2 of RFC1. Despite extensive studies, the pathophysiological mechanism of these intronic expansions remains elusive. We screened by clinical exome sequencing two unrelated patients presenting with late-onset ataxia. A repeat-primer polymerase chain reaction was used for RFC1 AAGGG intronic expansion identification. RFC1 mRNA expression was assessed by quantitative reverse transcription-polymerase chain reaction. We identified the first two CANVAS affected patients who are compound heterozygous for RFC1 truncating variants (p.Arg388* and c.575delA, respectively) and a pathological AAGGG expansion. RFC1 expression studies in whole blood showed a significant reduction of RFC1 mRNA for both patients compared to three patients with bi-allelic RFC1 expansions. In conclusion, this observation provides clues that suggest bi-allelic RFC1 conditional loss-of-function as the cause of the disease.


Assuntos
Vestibulopatia Bilateral , Ataxia Cerebelar , Doenças do Sistema Nervoso Periférico , Proteína de Replicação C , Humanos , Vestibulopatia Bilateral/complicações , Ataxia Cerebelar/genética , Doenças do Sistema Nervoso Periférico/complicações , Doenças do Sistema Nervoso Periférico/genética , Reflexo Anormal , RNA Mensageiro/genética , Síndrome , Proteína de Replicação C/genética
2.
J Pathol ; 253(2): 186-197, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33095908

RESUMO

Cystic fibrosis (CF), a genetic disorder, is characterized by chronic lung disease. Small non-coding RNAs are key regulators of gene expression and participate in various processes, which are dysregulated in CF; however, they remain poorly studied. Here, we determined the complete microRNAs (miRNAs) expression pattern in three CF ex vivo models. The miRNA profiles of air-liquid interface cultures of airway epithelia (bronchi, nasal cells, and nasal polyps) samples from patients with CF and non-CF controls were obtained by deep sequencing. Compared with non-CF controls, several miRNAs were deregulated in CF samples; for instance, miR-181a-5p and the miR-449 family were upregulated. Moreover, mature miRNAs often showed variations (i.e. isomiRs) relative to their reference sequence, such as miR-101, suggesting that miRNAs consist of heterogeneous repertoires of multiple isoforms with different effects on gene expression. Analysis of miR-181a-5p and miR-101-3p roles indicated that they regulate the expression of WISP1, a key component of cell proliferation/migration programs. We showed that miR-101 and miR-181a-5p participated in aberrant recapitulation of wound healing programs by controlling WISP1 mRNA and protein level. Our miRNA expression data bring new insights into CF physiopathology and define new potential therapeutic targets in CF. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Proteínas de Sinalização Intercelular CCN/genética , Fibrose Cística/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas/genética , Movimento Celular , Proliferação de Células , Fibrose Cística/patologia , Fibrose Cística/terapia , Expressão Gênica , Genes Reporter , Humanos , RNA Mensageiro/genética , Análise Serial de Tecidos , Regulação para Cima
3.
Am J Physiol Lung Cell Mol Physiol ; 311(4): L696-L703, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27496897

RESUMO

Impaired airway homeostasis in chronic obstructive pulmonary disease (COPD) could be partly related to club cell secretory protein (CCSP) deficiency. We hypothesize that CCSP G38A polymorphism is involved and aim to examine the influence of the CCSP G38A polymorphism on CCSP transcription levels and its regulatory mechanisms. CCSP genotype and CCSP levels in serum and sputum were assessed in 66 subjects with stable COPD included in a 1-yr observational study. Forty-nine of them had an exacerbation. In an in vitro study, the impact on the CCSP promoter of 38G wild-type or 38A variant was assessed. BEAS-2B cells were transfected by either the 38G or 38A construct, in the presence/absence of cigarette smoke extract (CSE) or lipopolysaccharides (LPS). Cotransfections with modulating transcription factors, p53 and Nkx2.1, identified by in silico analysis by using ConSite and TFSEARCH were conducted. A allele carrier COPD patients had lower serum and sputum CCSP levels, especially among active smokers, and a decreased body mass index, airflow obstruction, dyspnea, and exercise capacity (BODE) score. In vitro, baseline CCSP transcription levels were similar between the wild and variant constructs. CSE decreased more profoundly the CCSP transcription level of 38A transfected cells. The opposite effect was observed with p53 cotransfection. LPS stimulation induced CCSP repression in 38A promoter transfected cells. Cotransfection with Nkx2.1 significantly activated the CCSP promoters irrespective of the polymorphism. Circulating CCSP levels are associated with smoking and the CCSP G38A polymorphism. CSE, LPS, and the Nkx2.1 and p53 transcription factors modulated the CCSP promoter efficiency. The 38A polymorphism exaggerated the CCSP repression in response to p53 and CSE.


Assuntos
Doença Pulmonar Obstrutiva Crônica/genética , Uteroglobina/genética , Idoso , Sequência de Bases , Linhagem Celular , Sequência Conservada , Feminino , Interação Gene-Ambiente , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Fumar/efeitos adversos , Fumar/genética , Ativação Transcricional , Uteroglobina/sangue
4.
Eur Respir J ; 45(1): 116-28, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25186262

RESUMO

The CFTR gene displays a tightly regulated tissue-specific and temporal expression. Mutations in this gene cause cystic fibrosis (CF). In this study we wanted to identify trans-regulatory elements responsible for CFTR differential expression in fetal and adult lung, and to determine the importance of inhibitory motifs in the CFTR-3'UTR with the aim of developing new tools for the correction of disease-causing mutations within CFTR. We show that lung development-specific transcription factors (FOXA, C/EBP) and microRNAs (miR-101, miR-145, miR-384) regulate the switch from strong fetal to very low CFTR expression after birth. By using miRNome profiling and gene reporter assays, we found that miR-101 and miR-145 are specifically upregulated in adult lung and that miR-101 directly acts on its cognate site in the CFTR-3'UTR in combination with an overlapping AU-rich element. We then designed miRNA-binding blocker oligonucleotides (MBBOs) to prevent binding of several miRNAs to the CFTR-3'UTR and tested them in primary human nasal epithelial cells from healthy individuals and CF patients carrying the p.Phe508del CFTR mutation. These MBBOs rescued CFTR channel activity by increasing CFTR mRNA and protein levels. Our data offer new understanding of the control of the CFTR gene regulation and new putative correctors for cystic fibrosis.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Adulto , Animais , Sítios de Ligação , Brônquios/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Masculino , Camundongos , Mutagênese , Mutação , Oligonucleotídeos/química , Fatores de Transcrição/metabolismo
5.
Genet Med ; 17(10): 796-806, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25569440

RESUMO

PURPOSE: Although 97-99% of CFTR mutations have been identified, great efforts must be made to detect yet-unidentified mutations. METHODS: We developed a small-scale next-generation sequencing approach for reliably and quickly scanning the entire gene, including noncoding regions, to identify new mutations. We applied this approach to 18 samples from patients suffering from cystic fibrosis (CF) in whom only one mutation had hitherto been identified. RESULTS: Using an in-house bioinformatics pipeline, we could rapidly identify a second disease-causing CFTR mutation for 16 of 18 samples. Of them, c.1680-883A>G was found in three unrelated CF patients. Analysis of minigenes and patients' transcripts showed that this mutation results in aberrantly spliced transcripts because of the inclusion of a pseudoexon. It is located only three base pairs from the c.1680-886A>G mutation (1811+1.6kbA>G), the fourth most frequent mutation in southwestern Europe. We next tested the effect of antisense oligonucleotides targeting splice sites on these two mutations on pseudoexon skipping. Oligonucleotide transfection resulted in the restoration of the full-length, in-frame CFTR transcript, demonstrating the effect of antisense oligonucleotide-induced pseudoexon skipping in CF. CONCLUSION: Our data confirm the importance of analyzing noncoding regions to find unidentified mutations, which is essential to designing targeted therapeutic approaches.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Fibrose Cística/terapia , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Alternativo , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Cromossomos Humanos Par 7 , Biologia Computacional/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/química , Éxons , Expressão Gênica , Ordem dos Genes , Genes Reporter , Loci Gênicos , Humanos , Íntrons , Masculino , Dados de Sequência Molecular , Mutação , Matrizes de Pontuação de Posição Específica , Alinhamento de Sequência , Reparo Gênico Alvo-Dirigido
6.
J Cyst Fibros ; 22(6): 1070-1079, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37422433

RESUMO

RATIONALE: Limited information is available on the clinical status of people with Cystic Fibrosis (pwCF) carrying 2 nonsense mutations (PTC/PTC). The main objective of this study was to compare disease severity between pwCF PTC/PTC, compound heterozygous for F508del and PTC (F508del/PTC) and homozygous for F508del (F508del+/+). METHODS: Based on the European CF Society Patient Registry clinical data of pwCF living in high and middle income European and neighboring countries, PTC/PTC (n = 657) were compared with F508del+/+ (n = 21,317) and F508del/PTC(n = 4254).CFTR mRNA and protein activity levels were assessed in primary human nasal epithelial (HNE) cells sampled from 22 PTC/PTC pwCF. MAIN RESULTS: As compared to F508del+/+ pwCF; both PTC/PTC and F508del/PTC pwCF exhibited a significantly faster rate of decline in Forced Expiratory Volume in 1 s (FEV1) from 7 years (-1.33 for F508del +/+, -1.59 for F508del/PTC; -1.65 for PTC/PTC, p < 0.001) until respectively 30 years (-1.05 for F508del +/+, -1.23 for PTC/PTC, p = 0.048) and 27 years (-1.12 for F508del +/+, -1.26 for F508del/PTC, p = 0.034). This resulted in lower FEV1 values in adulthood. Mortality of pediatric pwCF with one or two PTC alleles was significantly higher than their F508del homozygous pairs. Infection with Pseudomonas aeruginosa was more frequent in PTC/PTC versus F508del+/+ and F508del/PTC pwCF. CFTR activity in PTC/PTC pwCF's HNE cells ranged between 0% to 3% of the wild-type level. CONCLUSIONS: Nonsense mutations decrease the survival and accelerate the course of respiratory disease in children and adolescents with Cystic Fibrosis.


Assuntos
Fibrose Cística , Adolescente , Humanos , Criança , Fibrose Cística/genética , Fibrose Cística/metabolismo , Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Volume Expiratório Forçado , RNA Mensageiro , Mutação
7.
Pharmaceutics ; 14(4)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35456644

RESUMO

Therapeutic peptides have regained interest as they can address unmet medical needs and can be an excellent complement to pharmaceutic small molecules and other macromolecular therapeutics. Over the past decades, correctors and potentiators of the cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel causing cystic fibrosis (CF) when mutated, were developed to reduce the symptoms of the patients. In this context, we have previously designed a CFTR-stabilizing iCAL36 peptide able to further increase the CFTR amount in epithelial cells, thereby resulting in a higher CFTR activity. In the present study, optimization of the peptidyl inhibitor was performed by coupling five different cell-penetrating peptides (CPP), which are Tat, dTat, TatRI (retro-inverso), MPG, and Penetratin. Screening of the internalization properties of these CPP-iCAL36 peptides under different conditions (with or without serum or endocytosis inhibitors, etc.) was performed to select TatRI as the optimal CPP for iCAL36 delivery. More importantly, using this TatRI-iCAL36 peptide, we were able to reveal for the first time an additive increase in the CFTR amount in the presence of VX-445/VX-809 compared to VX-445/VX-809 treatment alone. This finding is a significant contribution to the development of CFTR-stabilizing peptides in addition to currently used treatments (small-molecule correctors or potentiators) for CF patients.

8.
J Cyst Fibros ; 20(3): 464-472, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33341408

RESUMO

BACKGROUND: Minigenes and in silico prediction tools are commonly used to assess the impact on splicing of CFTR variants. Exon skipping is often neglected though it could impact the efficacy of targeted therapies. The aim of the study was to identify exon skipping associated with CFTR variants and to evaluate in silico predictions of seven freely available software. METHODS: CFTR basal exon skipping was evaluated on endogenous mRNA extracted from non-CF nasal cells and on two CFTR minigene banks. In silico tools and minigene systems were used to evaluate the impact of CFTR exonic variants on exon skipping. RESULTS: Data showed that out of 65 CFTR variants tested, 26 enhanced exon skipping and that in silico prediction efficacy was of 50%-66%. Some in silico tools presented predictions with a bias towards the occurrence of splicing events while others presented a bias towards the absence of splicing events (non-detection including true negatives and false negatives). Classification of exons depending on their basal exon skipping level increased prediction rates up to 80%. CONCLUSION: This study indicates that taking basal exon skipping into account could orientate the choice of the in silico tools to improve prediction rates. It also highlights the need to validate effects using in vitro assays or mRNA studies in patients. Eventually, it shows that variant-guided therapy should also target exon skipping associated with variants.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Éxons , Processamento Alternativo , Células Cultivadas , Humanos , Mucosa Nasal/citologia , Sítios de Splice de RNA , Deleção de Sequência
10.
Sci Rep ; 7: 39094, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28045018

RESUMO

We have analysed the splicing pattern of the human Duchenne Muscular Dystrophy (DMD) transcript in normal skeletal muscle. To achieve depth of coverage required for the analysis of this lowly expressed gene in muscle, we designed a targeted RNA-Seq procedure that combines amplification of the full-length 11.3 kb DMD cDNA sequence and 454 sequencing technology. A high and uniform coverage of the cDNA sequence was obtained that allowed to draw up a reliable inventory of the physiological alternative splicing events in the muscular DMD transcript. In contrast to previous assumptions, we evidenced that most of the 79 DMD exons are constitutively spliced in skeletal muscle. Only a limited number of 12 alternative splicing events were identified, all present at a very low level. These include previously known exon skipping events but also newly described pseudoexon inclusions and alternative 3' splice sites, of which one is the first functional NAGNAG splice site reported in the DMD gene. This study provides the first RNA-Seq-based reference of DMD splicing pattern in skeletal muscle and reports on an experimental procedure well suited to detect condition-specific differences in this low abundance transcript that may prove useful for diagnostic, research or RNA-based therapeutic applications.


Assuntos
Distrofina/genética , Éxons , Perfilação da Expressão Gênica , Músculo Esquelético/fisiologia , Splicing de RNA , Adulto , DNA Complementar/química , DNA Complementar/genética , Voluntários Saudáveis , Humanos , Masculino , Análise de Sequência de RNA , Adulto Jovem
11.
Clin Epigenetics ; 9: 19, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28289476

RESUMO

BACKGROUND: Lung disease progression is variable among cystic fibrosis (CF) patients and depends on DNA mutations in the CFTR gene, polymorphic variations in disease modifier genes, and environmental exposure. The contribution of genetic factors has been extensively investigated, whereas the mechanism whereby environmental factors modulate the lung disease is unknown. In this project, we hypothesized that (i) reiterative stress alters the epigenome in CF-affected tissues and (ii) DNA methylation variations at disease modifier genes modulate the lung function in CF patients. RESULTS: We profiled DNA methylation at CFTR, the disease-causing gene, and at 13 lung modifier genes in nasal epithelial cells and whole blood samples from 48 CF patients and 24 healthy controls. CF patients homozygous for the p.Phe508del mutation and ≥18-year-old were stratified according to the lung disease severity. DNA methylation was measured by bisulfite and next-generation sequencing. The DNA methylation profile allowed us to correctly classify 75% of the subjects, thus providing a CF-specific molecular signature. Moreover, in CF patients, DNA methylation at specific genes was highly correlated in the same tissue sample. We suggest that gene methylation in CF cells may be co-regulated by disease-specific trans-factors. Three genes were differentially methylated in CF patients compared with controls and/or in groups of pulmonary severity: HMOX1 and GSTM3 in nasal epithelial samples; HMOX1 and EDNRA in blood samples. The association between pulmonary severity and DNA methylation at EDNRA was confirmed in blood samples from an independent set of CF patients. Also, lower DNA methylation levels at GSTM3 were associated with the GSTM3*B allele, a polymorphic 3-bp deletion that has a protective effect in cystic fibrosis. CONCLUSIONS: DNA methylation levels are altered in nasal epithelial and blood cell samples from CF patients. Analysis of CFTR and 13 lung disease modifier genes shows DNA methylation changes of small magnitude: some of them are a consequence of the disease; other changes may result in small expression variations that collectively modulate the lung disease severity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Metilação de DNA , Genes Modificadores , Pneumopatias/genética , Adulto , Fibrose Cística/sangue , Epigenômica , Feminino , Glutationa Transferase/genética , Heme Oxigenase-1/genética , Humanos , Pneumopatias/sangue , Pneumopatias/complicações , Masculino , Nariz/química , Receptor de Endotelina A/genética , Análise de Sequência de DNA , Deleção de Sequência , Índice de Gravidade de Doença , Adulto Jovem
12.
Epigenetics ; 9(7): 1007-17, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24782114

RESUMO

The genetic mechanisms that regulate CFTR, the gene responsible for cystic fibrosis, have been widely investigated in cultured cells. However, mechanisms responsible for tissue-specific and time-specific expression are not completely elucidated in vivo. Through the survey of public databases, we found that the promoter of CFTR was associated with bivalent chromatin in human embryonic stem (ES) cells. In this work, we analyzed fetal (at different stages of pregnancy) and adult tissues and showed that, in digestive and lung tissues, which expressed CFTR, H3K4me3 was maintained in the promoter. Histone acetylation was high in the promoter and in two intronic enhancers, especially in fetal tissues. In contrast, in blood cells, which did not express CFTR, the bivalent chromatin was resolved (the promoter was labeled by the silencing mark H3K27me3). Cis-regulatory sequences were associated with lowly acetylated histones. We also provide evidence that the tissue-specific expression of CFTR is not regulated by dynamic changes of DNA methylation in the promoter. Overall, this work shows that a balance between activating and repressive histone modifications in the promoter and intronic enhancers results in the fine regulation of CFTR expression during development, thereby ensuring tissue specificity.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feto/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Acetilação , Células Sanguíneas/metabolismo , Metilação de DNA , Sistema Digestório/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Masculino , Gravidez , Elementos de Resposta
13.
PLoS One ; 8(4): e60211, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23560079

RESUMO

The promoter of the cystic fibrosis transmembrane conductance regulator gene CFTR is tightly controlled by regulators including CCAAT/enhancer binding proteins (C/EBPs). We previously reported that the transcription factors YY1 and USF2 affect CFTR expression. We can now demonstrate that C/EBPß, a member of the CCAAT family, binds to the CFTR promoter and contributes to its transcriptional activity. Our data reveal that C/EBPß cooperates with USF2 and acts antagonistically to YY1 in the control of CFTR expression. Interestingly, YY1, a strong repressor, fails to repress the CFTR activation induced by USF2 through DNA binding competition. Collectively, the data strongly suggest a model by which USF2 functionally interacts with YY1 blocking its inhibitory activity, in favour of C/EBPß transactivation. Further investigation into the interactions between these three proteins revealed that phosphorylation of C/EBPß influences the DNA occupancy of YY1 and favours the interaction between USF2 and YY1. This phosphorylation process has several implications in the CFTR transcriptional process, thus evoking an additional layer of complexity to the mechanisms influencing CFTR gene regulation.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Mucosa Respiratória/metabolismo , Fatores Estimuladores Upstream/metabolismo , Fator de Transcrição YY1/metabolismo , Sequência de Bases , Sítios de Ligação , Proteína beta Intensificadora de Ligação a CCAAT/genética , Linhagem Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/citologia , Genes Reporter , Humanos , Luciferases , Dados de Sequência Molecular , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Mucosa Respiratória/citologia , Transdução de Sinais , Transcrição Gênica , Fatores Estimuladores Upstream/genética , Fator de Transcrição YY1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA