Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Regul Toxicol Pharmacol ; 149: 105623, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631606

RESUMO

The Bone-Marrow derived Dendritic Cell (BMDC) test is a promising assay for identifying sensitizing chemicals based on the 3Rs (Replace, Reduce, Refine) principle. This study expanded the BMDC benchmarking to various in vitro, in chemico, and in silico assays targeting different key events (KE) in the skin sensitization pathway, using common substances datasets. Additionally, a Quantitative Structure-Activity Relationship (QSAR) model was developed to predict the BMDC test outcomes for sensitizing or non-sensitizing chemicals. The modeling workflow involved ISIDA (In Silico Design and Data Analysis) molecular fragment descriptors and the SVM (Support Vector Machine) machine-learning method. The BMDC model's performance was at least comparable to that of all ECVAM-validated models regardless of the KE considered. Compared with other tests targeting KE3, related to dendritic cell activation, BMDC assay was shown to have higher balanced accuracy and sensitivity concerning both the Local Lymph Node Assay (LLNA) and human labels, providing additional evidence for its reliability. The consensus QSAR model exhibits promising results, correlating well with observed sensitization potential. Integrated into a publicly available web service, the BMDC-based QSAR model may serve as a cost-effective and rapid alternative to lab experiments, providing preliminary screening for sensitization potential, compound prioritization, optimization and risk assessment.


Assuntos
Benchmarking , Células Dendríticas , Relação Quantitativa Estrutura-Atividade , Células Dendríticas/efeitos dos fármacos , Humanos , Animais , Máquina de Vetores de Suporte , Simulação por Computador , Dermatite Alérgica de Contato , Alérgenos/toxicidade , Alternativas aos Testes com Animais/métodos , Células da Medula Óssea/efeitos dos fármacos , Ensaio Local de Linfonodo , Camundongos
2.
Bioinformatics ; 38(8): 2307-2314, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35157024

RESUMO

MOTIVATION: Human immunodeficiency virus (HIV) drug resistance is a global healthcare issue. The emergence of drug resistance influenced the efficacy of treatment regimens, thus stressing the importance of treatment adaptation. Computational methods predicting the drug resistance profile from genomic data of HIV isolates are advantageous for monitoring drug resistance in patients. However, existing computational methods for drug resistance prediction are either not suitable for emerging HIV strains with complex mutational patterns or lack interpretability, which is of paramount importance in clinical practice. The approach reported here overcomes these limitations and combines high accuracy of predictions and interpretability of the models. RESULTS: In this work, a new methodology based on generative topographic mapping (GTM) for biological sequence space representation and quantitative genotype-phenotype relationships prediction purposes was introduced. The GTM-based resistance landscapes allowed us to predict the resistance of HIV strains based on sequencing and drug resistance data for three viral proteins [integrase (IN), protease (PR) and reverse transcriptase (RT)] from Stanford HIV drug resistance database. The average balanced accuracy for PR inhibitors was 0.89 ± 0.01, for IN inhibitors 0.85 ± 0.01, for non-nucleoside RT inhibitors 0.73 ± 0.01 and for nucleoside RT inhibitors 0.84 ± 0.01. We have demonstrated in several case studies that GTM-based resistance landscapes are useful for visualization and analysis of sequence space as well as for treatment optimization purposes. Here, GTMs were applied for the in-depth analysis of the relationships between mutation pattern and drug resistance using mutation landscapes. This allowed us to predict retrospectively the importance of the presence of particular mutations (e.g. V32I, L10F and L33F in HIV PR) for the resistance development. This study highlights some perspectives of GTM applications in clinical informatics and particularly in the field of sequence space exploration. AVAILABILITY AND IMPLEMENTATION: https://github.com/karinapikalyova/ISIDASeq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Infecções por HIV , HIV-1 , Humanos , HIV-1/genética , HIV-1/metabolismo , Sequência de Aminoácidos , Infecções por HIV/tratamento farmacológico , Estudos Retrospectivos , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Mutação , Protease de HIV/genética , Protease de HIV/metabolismo , Resistência a Medicamentos , Farmacorresistência Viral/genética , Genótipo
3.
J Chem Inf Model ; 63(17): 5571-5582, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37602843

RESUMO

In chemical library analysis, it may be useful to describe libraries as individual items rather than collections of compounds. This is particularly true for ultra-large noncherry-pickable compound mixtures, such as DNA-encoded libraries (DELs). In this sense, the chemical library space (CLS) is useful for the management of a portfolio of libraries, just like chemical space (CS) helps manage a portfolio of molecules. Several possible CLSs were previously defined using vectorial library representations obtained from generative topographic mapping (GTM). Given the steadily growing number of DEL designs, the CLS becomes "crowded" and requires analysis tools beyond pairwise library comparison. Therefore, herein, we investigate the cartography of CLS on meta-(µ)GTMs─"meta" to remind that these are maps of the CLS, itself based on responsibility vectors issued by regular CS GTMs. 2,5 K DELs and ChEMBL (reference) were projected on the µGTM, producing landscapes of library-specific properties. These describe both interlibrary similarity and intrinsic library characteristics in the same view, herewith facilitating the selection of the best project-specific libraries.


Assuntos
Bibliotecas de Moléculas Pequenas , Biblioteca Gênica
4.
J Chem Inf Model ; 63(13): 4042-4055, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37368824

RESUMO

The development of DNA-encoded library (DEL) technology introduced new challenges for the analysis of chemical libraries. It is often useful to consider a chemical library as a stand-alone chemoinformatic object─represented both as a collection of independent molecules, and yet an individual entity─in particular, when they are inseparable mixtures, like DELs. Herein, we introduce the concept of chemical library space (CLS), in which resident items are individual chemical libraries. We define and compare four vectorial library representations obtained using generative topographic mapping. These allow for an effective comparison of libraries, with the ability to tune and chemically interpret the similarity relationships. In particular, property-tuned CLS encodings enable to simultaneously compare libraries with respect to both property and chemotype distributions. We apply the various CLS encodings for the selection problem of DELs that optimally "match" a reference collection (here ChEMBL28), showing how the choice of the CLS descriptors may help to fine-tune the "matching" (overlap) criteria. Hence, the proposed CLS may represent a new efficient way for polyvalent analysis of thousands of chemical libraries. Selection of an easily accessible compound collection for drug discovery, as a substitute for a difficult to produce reference library, can be tuned for either primary or target-focused screening, also considering property distributions of compounds. Alternatively, selection of libraries covering novel regions of the chemical space with respect to a reference compound subspace may serve for library portfolio enrichment.


Assuntos
DNA , Bibliotecas de Moléculas Pequenas , Bibliotecas de Moléculas Pequenas/química , DNA/química , Biblioteca Gênica , Descoberta de Drogas/métodos
5.
J Chem Inf Model ; 63(21): 6629-6641, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37902548

RESUMO

Computational design of chiral organic catalysts for asymmetric synthesis is a promising technology that can significantly reduce the material and human resources required for the preparation of enantiopure compounds. Herein, for the modeling of catalysts' enantioselectivity, we propose to use the multi-instance learning approach accounting for multiple catalyst conformers and requiring neither conformer selection nor their spatial alignment. A catalyst was represented by an ensemble of conformers, each encoded by three-dimesinonal (3D) pmapper descriptors. A catalyzed reactant transformation was converted into a single molecular graph, a condensed graph of reaction, encoded by 2D fragment descriptors. A whole chemical reaction was finally encoded by concatenated 3D catalyst and 2D transformation descriptors. The performance of the proposed method was demonstrated in the modeling of the enantioselectivity of homogeneous and phase-transfer reactions and compared with the state-of-the-art approaches.


Assuntos
Catálise
6.
J Chem Inf Model ; 63(16): 5107-5119, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37556857

RESUMO

This study introduces a new de novo design algorithm called GENERA that combines the capabilities of a deep-learning algorithm for automated drug-like analogue design, called DeLA-Drug, with a genetic algorithm for generating molecules with desired target-oriented properties. Specifically, GENERA was applied to the angiotensin-converting enzyme 2 (ACE2) target, which is implicated in many pathological conditions, including COVID-19. The ability of GENERA to de novo design promising candidates for a specific target was assessed using two docking programs, PLANTS and GLIDE. A fitness function based on the Pareto dominance resulting from computed PLANTS and GLIDE scores was applied to demonstrate the algorithm's ability to perform multiobjective optimizations effectively. GENERA can quickly generate focused libraries that produce better scores compared to a starting set of known ACE-2 binders. This study is the first to utilize a DL-based algorithm designed for analogue generation as a mutational operator within a GA framework, representing an innovative approach to target-oriented de novo design.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Algoritmos , Desenho de Fármacos
7.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298952

RESUMO

Ab initio kinetic studies are important to understand and design novel chemical reactions. While the Artificial Force Induced Reaction (AFIR) method provides a convenient and efficient framework for kinetic studies, accurate explorations of reaction path networks incur high computational costs. In this article, we are investigating the applicability of Neural Network Potentials (NNP) to accelerate such studies. For this purpose, we are reporting a novel theoretical study of ethylene hydrogenation with a transition metal complex inspired by Wilkinson's catalyst, using the AFIR method. The resulting reaction path network was analyzed by the Generative Topographic Mapping method. The network's geometries were then used to train a state-of-the-art NNP model, to replace expensive ab initio calculations with fast NNP predictions during the search. This procedure was applied to run the first NNP-powered reaction path network exploration using the AFIR method. We discovered that such explorations are particularly challenging for general purpose NNP models, and we identified the underlying limitations. In addition, we are proposing to overcome these challenges by complementing NNP models with fast semiempirical predictions. The proposed solution offers a generally applicable framework, laying the foundations to further accelerate ab initio kinetic studies with Machine Learning Force Fields, and ultimately explore larger systems that are currently inaccessible.


Assuntos
Redes Neurais de Computação , Cinética , Hidrogenação
8.
Angew Chem Int Ed Engl ; 62(11): e202218659, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688354

RESUMO

Catalyst optimization processes typically rely on inductive and qualitative assumptions of chemists based on screening data. While machine learning models using molecular properties or calculated 3D structures enable quantitative data evaluation, costly quantum chemical calculations are often required. In contrast, readily available binary fingerprint descriptors are time- and cost-efficient, but their predictive performance remains insufficient. Here, we describe a machine learning model based on fragment descriptors, which are fine-tuned for asymmetric catalysis and represent cyclic or polyaromatic hydrocarbons, enabling robust and efficient virtual screening. Using training data with only moderate selectivities, we designed theoretically and validated experimentally new catalysts showing higher selectivities in a challenging asymmetric tetrahydropyran synthesis.

9.
J Chem Inf Model ; 62(9): 2015-2020, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34843251

RESUMO

This work introduces CGRdb2.0─an open-source database management system for molecules, reactions, and chemical data. CGRdb2.0 is a Python package connecting to a PostgreSQL database that enables native searches for molecules and reactions without complicated SQL syntax. The library provides out-of-the-box implementations for similarity and substructure searches for molecules, as well as similarity and substructure searches for reactions in two ways─based on reaction components and based on the Condensed Graph of Reaction approach, the latter significantly accelerating the performance. In benchmarking studies with the RDKit database cartridge, we demonstrate that CGRdb2.0 performs searches faster for smaller data sets, while allowing for interactive access to the retrieved data.


Assuntos
Benchmarking , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais
10.
J Chem Inf Model ; 62(18): 4537-4548, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36103300

RESUMO

Nowadays, drug discovery is inevitably intertwined with the usage of large compound collections. Understanding of their chemotype composition and physicochemical property profiles is of the highest importance for successful hit identification. Efficient polyfunctional tools allowing multifaceted analysis of constantly growing chemical libraries must be Big Data-compatible. Here, we present the freely accessible ChemSpace Atlas (https://chematlas.chimie.unistra.fr), which includes almost 40K hierarchically organized Generative Topographic Maps (GTM) accommodating up to 500 M compounds covering fragment-like, lead-like, drug-like, PPI-like, and NP-like chemical subspaces. They allow users to navigate and analyze ZINC, ChEMBL, and COCONUT from multiple perspectives on different scales: from a bird's eye view of the entire library to structural pattern detection in small clusters. Around 20 physicochemical properties and almost 750 biological activities can be visualized (associated with map zones), supporting activity profiling and analogue search. Moreover, ChemScape Atlas will be extended toward new chemical subspaces (e.g., DNA-encoded libraries and synthons) and functionalities (ADMETox profiling and property-guided de novo compound generation).


Assuntos
Descoberta de Drogas , Bibliotecas de Moléculas Pequenas , DNA/química , Biblioteca Gênica , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Zinco
11.
J Chem Inf Model ; 62(15): 3524-3534, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35876159

RESUMO

Graph-based architectures are becoming increasingly popular as a tool for structure generation. Here, we introduce novel open-source architecture HyFactor in which, similar to the InChI linear notation, the number of hydrogens attached to the heavy atoms was considered instead of the bond types. HyFactor was benchmarked on the ZINC 250K, MOSES, and ChEMBL data sets against conventional graph-based architecture ReFactor, representing our implementation of the reported DEFactor architecture in the literature. On average, HyFactor models contain some 20% less fitting parameters than those of ReFactor. The two architectures display similar validity, uniqueness, and reconstruction rates. Compared to the training set compounds, HyFactor generates more similar structures than ReFactor. This could be explained by the fact that the latter generates many open-chain analogues of cyclic structures in the training set. It has been demonstrated that the reconstruction error of heavy molecules can be significantly reduced using the data augmentation technique. The codes of HyFactor and ReFactor as well as all models obtained in this study are publicly available from our GitHub repository: https://github.com/Laboratoire-de-Chemoinformatique/HyFactor.


Assuntos
Software
12.
J Chem Inf Model ; 62(22): 5471-5484, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36332178

RESUMO

In order to better foramize it, the notorious inverse-QSAR problem (finding structures of given QSAR-predicted properties) is considered in this paper as a two-step process including (i) finding "seed" descriptor vectors corresponding to user-constrained QSAR model output values and (ii) identifying the chemical structures best matching the "seed" vectors. The main development effort here was focused on the latter stage, proposing a new attention-based conditional variational autoencoder neural-network architecture based on recent developments in attention-based methods. The obtained results show that this workflow was capable of generating compounds predicted to display desired activity while being completely novel compared to the training database (ChEMBL). Moreover, the generated compounds show acceptable druglikeness and synthetic accessibility. Both pharmacophore and docking studies were carried out as "orthogonal" in silico validation methods, proving that some of de novo structures are, beyond being predicted active by 2D-QSAR models, clearly able to match binding 3D pharmacophores and bind the protein pocket.


Assuntos
Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular
13.
J Chem Inf Model ; 62(9): 2151-2163, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34723532

RESUMO

Most of the existing computational tools for de novo library design are focused on the generation, rational selection, and combination of promising structural motifs to form members of the new library. However, the absence of a direct link between the chemical space of the retrosynthetically generated fragments and the pool of available reagents makes such approaches appear as rather theoretical and reality-disconnected. In this context, here we present Synthons Interpreter (SynthI), a new open-source toolkit for de novo library design that allows merging those two chemical spaces into a single synthons space. Here synthons are defined as actual fragments with valid valences and special labels, specifying the position and the nature of reactive centers. They can be issued from either the "breakup" of reference compounds according to 38 retrosynthetic rules or real reagents, after leaving group withdrawal or transformation. Such an approach not only enables the design of synthetically accessible libraries and analog generation but also facilitates reagents (building blocks) analysis in the medicinal chemistry context. SynthI code is publicly available at https://github.com/Laboratoire-de-Chemoinformatique/SynthI.


Assuntos
Indicadores e Reagentes
14.
J Chem Inf Model ; 62(9): 2171-2185, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-34928600

RESUMO

The ability to efficiently synthesize desired compounds can be a limiting factor for chemical space exploration in drug discovery. This ability is conditioned not only by the existence of well-studied synthetic protocols but also by the availability of corresponding reagents, so-called building blocks (BBs). In this work, we present a detailed analysis of the chemical space of 400 000 purchasable BBs. The chemical space was defined by corresponding synthons─fragments contributed to the final molecules upon reaction. They allow an analysis of BB physicochemical properties and diversity, unbiased by the leaving and protective groups in actual reagents. The main classes of BBs were analyzed in terms of their availability, rule-of-two-defined quality, and diversity. Available BBs were eventually compared to a reference set of biologically relevant synthons derived from ChEMBL fragmentation, in order to illustrate how well they cover the actual medicinal chemistry needs. This was performed on a newly constructed universal generative topographic map of synthon chemical space that enables visualization of both libraries and analysis of their overlapped and library-specific regions.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Descoberta de Drogas/métodos , Indicadores e Reagentes
15.
Chem Soc Rev ; 50(16): 9121-9151, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34212944

RESUMO

COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Simulação por Computador , Desenho de Fármacos , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos , Antivirais/uso terapêutico , COVID-19/virologia , Ensaios Clínicos como Assunto , Humanos , Pandemias , SARS-CoV-2/efeitos dos fármacos
16.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682792

RESUMO

Molecular similarity is an impressively broad topic with many implications in several areas of chemistry. Its roots lie in the paradigm that 'similar molecules have similar properties'. For this reason, methods for determining molecular similarity find wide application in pharmaceutical companies, e.g., in the context of structure-activity relationships. The similarity evaluation is also used in the field of chemical legislation, specifically in the procedure to judge if a new molecule can obtain the status of orphan drug with the consequent financial benefits. For this procedure, the European Medicines Agency uses experts' judgments. It is clear that the perception of the similarity depends on the observer, so the development of models to reproduce the human perception is useful. In this paper, we built models using both 2D fingerprints and 3D descriptors, i.e., molecular shape and pharmacophore descriptors. The proposed models were also evaluated by constructing a dataset of pairs of molecules which was submitted to a group of experts for the similarity judgment. The proposed machine-learning models can be useful to reduce or assist human efforts in future evaluations. For this reason, the new molecules dataset and an online tool for molecular similarity estimation have been made freely available.


Assuntos
Aprendizado de Máquina , Receptores de Droga , Humanos , Percepção , Relação Estrutura-Atividade
17.
Int J Mol Sci ; 23(5)2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35269934

RESUMO

Neuromyelitis optica spectrum disorder (NMOSD) and multiple sclerosis (MS) are both autoimmune inflammatory and demyelinating diseases of the central nervous system. NMOSD is a highly disabling disease and rapid introduction of the appropriate treatment at the acute phase is crucial to prevent sequelae. Specific criteria were established in 2015 and provide keys to distinguish NMOSD and MS. One of the most reliable criteria for NMOSD diagnosis is detection in patient's serum of an antibody that attacks the water channel aquaporin-4 (AQP-4). Another target in NMOSD is myelin oligodendrocyte glycoprotein (MOG), delineating a new spectrum of diseases called MOG-associated diseases. Lastly, patients with NMOSD can be negative for both AQP-4 and MOG antibodies. At disease onset, NMOSD symptoms are very similar to MS symptoms from a clinical and radiological perspective. Thus, at first episode, given the urgency of starting the anti-inflammatory treatment, there is an unmet need to differentiate NMOSD subtypes from MS. Here, we used Fourier transform infrared spectroscopy in combination with a machine learning algorithm with the aim of distinguishing the infrared signatures of sera of a first episode of NMOSD from those of a first episode of relapsing-remitting MS, as well as from those of healthy subjects and patients with chronic inflammatory demyelinating polyneuropathy. Our results showed that NMOSD patients were distinguished from MS patients and healthy subjects with a sensitivity of 100% and a specificity of 100%. We also discuss the distinction between the different NMOSD serostatuses. The coupling of infrared spectroscopy of sera to machine learning is a promising cost-effective, rapid and reliable differential diagnosis tool capable of helping to gain valuable time in patients' treatment.


Assuntos
Esclerose Múltipla , Neuromielite Óptica , Aquaporina 4 , Autoanticorpos , Humanos , Aprendizado de Máquina , Esclerose Múltipla/diagnóstico , Glicoproteína Mielina-Oligodendrócito
18.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080168

RESUMO

New models for ACE2 receptor binding, based on QSAR and docking algorithms were developed, using XRD structural data and ChEMBL 26 database hits as training sets. The selectivity of the potential ACE2-binding ligands towards Neprilysin (NEP) and ACE was evaluated. The Enamine screening collection (3.2 million compounds) was virtually screened according to the above models, in order to find possible ACE2-chemical probes, useful for the study of SARS-CoV2-induced neurological disorders. An enzymology inhibition assay for ACE2 was optimized, and the combined diversified set of predicted selective ACE2-binding molecules from QSAR modeling, docking, and ultrafast docking was screened in vitro. The in vitro hits included two novel chemotypes suitable for further optimization.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/metabolismo , RNA Viral , SARS-CoV-2
19.
J Chem Inf Model ; 61(1): 179-188, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33334102

RESUMO

The days when medicinal chemistry was limited to a few series of compounds of therapeutic interest are long gone. Nowadays, no human may succeed to acquire a complete overview of more than a billion existing or feasible compounds within which the potential "blockbuster drugs" are well hidden and yet only a few mouse clicks away. To reach these "hidden treasures", we adapted the generative topographic mapping method to enable efficient navigation through the chemical space, from a global overview to a structural pattern detection, covering, for the first time, the complete ZINC library of purchasable compounds, relative to 1.6 million biologically relevant ChEMBL molecules. About 40 000 hierarchical maps of the chemical space were constructed. Structural motifs inherent to only one library were identified. Roughly 20 000 off-market ChEMBL compound families represent incentives to enrich commercial catalogs. Alternatively, 125 000 ZINC-specific compound classes, absent in structure-activity bases, are novel paths to explore in medicinal chemistry. The complete list of these chemotypes can be downloaded using the link https://forms.gle/B6bUJj82t9EfmttV6.


Assuntos
Química Farmacêutica
20.
J Chem Inf Model ; 61(2): 554-559, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33502186

RESUMO

Presently, quantum chemical calculations are widely used to generate extensive data sets for machine learning applications; however, generally, these sets only include information on equilibrium structures and some close conformers. Exploration of potential energy surfaces provides important information on ground and transition states, but analysis of such data is complicated due to the number of possible reaction pathways. Here, we present RePathDB, a database system for managing 3D structural data for both ground and transition states resulting from quantum chemical calculations. Our tool allows one to store, assemble, and analyze reaction pathway data. It combines relational database CGR DB for handling compounds and reactions as molecular graphs with a graph database architecture for pathway analysis by graph algorithms. Original condensed graph of reaction technology is used to store any chemical reaction as a single graph.


Assuntos
Algoritmos , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA