Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 129(21): 4130-4142, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27656108

RESUMO

Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.


Assuntos
Forma Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Animais , Células CACO-2 , Polaridade Celular , Citocinese , Cães , Humanos , Células MCF-7 , Células Madin Darby de Rim Canino , Modelos Biológicos
2.
Biochemistry ; 50(35): 7579-90, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21806020

RESUMO

Phosphatase of regenerating liver 3 (PRL-3) is suggested as a biomarker and therapeutic target in several cancers. It has a well-established causative role in cancer metastasis. However, little is known about its natural substrates, pathways, and biological functions, and only a few protein substrates have been suggested so far. To improve our understanding of the substrate specificity and molecular determinants of PRL-3 activity, the wild-type (WT) protein, two supposedly catalytically inactive mutants D72A and C104S, and the reported hyperactive mutant A111S were tested in vitro for substrate specificity and activity toward phosphopeptides and phosphoinositides (PIPs), their structural stability, and their ability to promote cell migration using stable HEK293 cell lines. We discovered that WT PRL-3 does not dephosphorylate the tested phosphopeptides in vitro. However, as shown by two complementary biochemical assays, PRL-3 is active toward the phosphoinositide PI(4,5)P(2). Our experimental results substantiated by molecular docking studies suggest that PRL-3 is a phosphatidylinositol 5-phosphatase. The C104S variant was shown to be not only catalytically inactive but also structurally destabilized and unable to promote cell migration, whereas WT PRL-3 promotes cell migration. The D72A mutant is structurally stable and does not dephosphorylate the unnatural substrate 3-O-methylfluorescein phosphate (OMFP). However, we observed residual in vitro activity of D72A against PI(4,5)P(2), and in accordance with this, it exhibits the same cellular phenotype as WT PRL-3. Our analysis of the A111S variant shows that the hyperactivity toward the unnatural OMFP substrate is not apparent in dephosphorylation assays with phosphoinositides: the mutant is completely inactive against PIPs. We observed significant structural destabilization of this variant. The cellular phenotype of this mutant equals that of the catalytically inactive C104S mutant. These results provide a possible explanation for the absence of the conserved Ser of the PTP catalytic motif in the PRL family. The correlation of the phosphatase activity toward PI(4,5)P(2) with the observed phenotypes for WT PRL-3 and the mutants suggests a link between the PI(4,5)P(2) dephosphorylation by PRL-3 and its role in cell migration.


Assuntos
Movimento Celular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/fisiologia , Fosfatidilinositóis/metabolismo , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/fisiologia , Sequência de Aminoácidos , Catálise , Movimento Celular/genética , Cisteína/genética , Ativação Enzimática/genética , Variação Genética , Células HEK293 , Humanos , Dados de Sequência Molecular , Mutação/genética , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/genética , Fosfatidilinositóis/química , Proteínas Tirosina Fosfatases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serina/genética , Especificidade por Substrato/genética
3.
Cell Rep ; 20(2): 397-410, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700941

RESUMO

Cell size homeostasis can be achieved by size checkpoints that couple cell size to cell-cycle progression or by alternative mechanisms such as constant extension. In mammalian cells, the existence of strict size checkpoints remains controversial due to the technical limitations in determining cell size directly and accurately. We developed a microfabricated channel system that linearizes mammalian cell growth and facilitates cell size measurements. By tracking cell length, while directly visualizing cell-cycle progression in rat basophilic leukemia cells and RAW 264.7 macrophages, we examined the mechanisms of size homeostasis and the existence of a size checkpoint at the G1/S transition. Our analysis revealed a two-tier size homeostasis mechanism where a G1 "sizer" or "adder" could operate, depending on the birth size of the cells.


Assuntos
Tamanho Celular/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Cromonas/farmacologia , Células HeLa , Homeostase/genética , Humanos , Camundongos , Morfolinas/farmacologia , Células RAW 264.7
4.
Commun Integr Biol ; 10(4): e1338990, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28919938

RESUMO

The maintenance of the epithelial architecture during tissue proliferation is achieved by apical positioning of the midbody after cell division. Consequently, midbody mislocalization contributes to epithelial architecture disruption, a fundamental event during epithelial tumorigenesis. Studies in 3D polarized epithelial MDCK or Caco2 cell models, where midbody misplacement leads to multiple ectopic but fully polarized lumen-containing cysts, revealed that this phenotype can be caused by 2 different scenarios: the loss of mitotic spindle orientation or the loss of asymmetric abscission. In addition, we have recently proposed a third cellular mechanism where the midbody mislocalization is achieved through cytokinesis acceleration driven by the cancer-promoting phosphatase of regenerating liver (PRL)-3. Here we critically review these findings, and we furthermore present new data indicating that midbodies themselves might act as signal unit for polarization since they can infer apical characteristics to a basal membrane.

5.
J Cell Biol ; 189(3): 557-71, 2010 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-20421427

RESUMO

Signaling by epidermal growth factor receptor (EGFR) must be controlled tightly because aberrant EGFR activity may cause cell transformation. Receptor-associated late transducer (RALT) is a feedback inhibitor of EGFR whose genetic ablation in the mouse causes phenotypes due to EGFR-driven excess cell proliferation. RALT inhibits EGFR catalytic activation by docking onto EGFR kinase domain. We report here an additional mechanism of EGFR suppression mediated by RALT, demonstrating that RALT-bound EGF receptors undergo endocytosis and eventual degradation into lysosomes. Moreover, RALT rescues the endocytic deficit of EGFR mutants unable to undergo either endocytosis (Dc214) or degradation (Y1045F) and mediates endocytosis via a domain distinct from that responsible for EGFR catalytic suppression. Consistent with providing a scaffolding function for endocytic proteins, RALT drives EGFR endocytosis by binding to AP-2 and Intersectins. These data suggest a model in which binding of RALT to EGFR integrates suppression of EGFR kinase with receptor endocytosis and degradation, leading to durable repression of EGFR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptores ErbB/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Células Cultivadas , Receptores ErbB/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Mutação , Fosfotransferases/antagonistas & inibidores , Fosfotransferases/genética , Fosfotransferases/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA