Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 26(8): 969-981, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32295865

RESUMO

Alternative polyadenylation (APA) determines stability, localization and translation potential of the majority of mRNA in eukaryotic cells. The heterodimeric mammalian cleavage factor II (CF IIm) is required for pre-mRNA 3' end cleavage and is composed of the RNA kinase hClp1 and the termination factor hPcf11; the latter protein binds to RNA and the RNA polymerase II carboxy-terminal domain. Here, we used siRNA mediated knockdown and poly(A) targeted RNA sequencing to analyze the role of CF IIm in gene expression and APA in estrogen receptor positive MCF7 breast cancer cells. Identified gene ontology terms link CF IIm function to regulation of growth factor activity, protein heterodimerization and the cell cycle. An overlapping requirement for hClp1 and hPcf11 suggested that CF IIm protein complex was involved in the selection of proximal poly(A) sites. In addition to APA shifts within 3' untranslated regions (3'-UTRs), we observed shifts from promoter proximal regions to the 3'-UTR facilitating synthesis of full-length mRNAs. Moreover, we show that several truncated mRNAs that resulted from APA within introns in MCF7 cells cosedimented with ribosomal components in an EDTA sensitive manner suggesting that those are translated into protein. We propose that CF IIm contributes to the regulation of mRNA function in breast cancer.


Assuntos
Neoplasias da Mama/genética , Poliadenilação/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética , Regiões 3' não Traduzidas/genética , Linhagem Celular Tumoral , Humanos , Células MCF-7 , Poli A/genética , Ligação Proteica/genética , RNA Polimerase II/genética , Precursores de RNA/genética , RNA Mensageiro/genética
2.
PLoS Biol ; 14(11): e2000520, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27832064

RESUMO

BioEYES, a nonprofit outreach program using zebrafish to excite and educate K-12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students' pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students' content knowledge and produced favorable shifts in students' attitudes about science. These outcomes were especially pronounced in younger students. Having served over 100,000 students, we find that our method for providing student-centered experiences and developing long-term partnerships with teachers is essential for the growth and sustainability of outreach and school collaborations.


Assuntos
Modelos Animais , Ciência/educação , Estudantes , Ensino , Peixe-Zebra , Animais , Currículo , Humanos
3.
Sci Data ; 11(1): 1024, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300112

RESUMO

Low grade serous carcinoma (LGSOC) is a rare epithelial ovarian cancer with unique molecular characteristics compared to the more common tubo-ovarian high-grade serous ovarian carcinoma. Pivotal clinical trials guiding the management of epithelial ovarian cancer lack sufficient cases of LGSOC for meaningful subgroup analysis, hence overall findings cannot be extrapolated to rarer chemo-resistant subtypes such as LGSOC. Furthermore, there is a need for more effective therapies for the treatment of relapsed disease, as treatment options are limited. To address this, we conducted the largest quantitative high-throughput drug screening effort (n = 3436 compounds) in 12 patient-derived LGSOC cell lines and one normal ovary cell line to identify unexplored therapeutic avenues. Using a combination of high-throughput robotics, high-content imaging and novel data analysis pipelines, our data set identified 60 high and 19 moderate confidence hits which induced cancer cell specific cytotoxicity at the lowest compound dose assessed (0.1 µM). We also revealed a series of known (mTOR/PI3K/AKT) and novel (EGFR and MDM2-p53) drug classes in which LGSOC cell lines showed demonstrable susceptibility to.


Assuntos
Cistadenocarcinoma Seroso , Ensaios de Triagem em Larga Escala , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/tratamento farmacológico , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Epitelial do Ovário/tratamento farmacológico
4.
NAR Genom Bioinform ; 6(3): lqae096, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39184376

RESUMO

Mucinous ovarian carcinoma (MOC) is a subtype of ovarian cancer that is distinct from all other ovarian cancer subtypes and currently has no targeted therapies. To identify novel therapeutic targets, we developed and applied a new method of differential network analysis comparing MOC to benign mucinous tumours (in the absence of a known normal tissue of origin). This method mapped the protein-protein network in MOC and then utilised structural bioinformatics to prioritise the proteins identified as upregulated in the MOC network for their likelihood of being successfully drugged. Using this protein-protein interaction modelling, we identified the strongest 5 candidates, CDK1, CDC20, PRC1, CCNA2 and TRIP13, as structurally tractable to therapeutic targeting by small molecules. siRNA knockdown of these candidates performed in MOC and control normal fibroblast cell lines identified CDK1, CCNA2, PRC1 and CDC20, as potential drug targets in MOC. Three targets (TRIP13, CDC20, CDK1) were validated using known small molecule inhibitors. Our findings demonstrate the utility of our pipeline for identifying new targets and highlight potential new therapeutic options for MOC patients.

5.
Cancers (Basel) ; 13(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830797

RESUMO

Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1-2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA