Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mycorrhiza ; 33(3): 153-164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36930376

RESUMO

Anthropogenic disturbances play an increasingly important role in structuring the diversity and functioning of soil organisms such as arbuscular mycorrhizal (AM) fungi. Frequently, multiple land-use practices, which may represent disturbances for AM fungal communities, operate simultaneously in different habitats. It is not known, however, how previous land-use history and specific habitat type influence AM fungal community response to disturbances. We applied mechanical (cutting to stimulate tillage) and chemical (herbicide addition) disturbances to AM fungal communities from meadow and arable field soils. Our results indicated that AM fungal communities from meadows, which previously had experienced mowing, were more species rich than communities from fields that had experienced intensive land-use practices. There were no significant differences, however, in the responses to disturbance of the AM fungal communities from field and meadow soils. We expected mechanical disturbance to promote taxa from the family Glomeraceae which are expected to exhibit a ruderal life-history strategy; instead, the abundance of this family increased in response to chemical disturbance. Simultaneous application of mechanical disturbance and herbicide decreased only the abundance of Diversisporaceae. No AM fungal families increased in abundance when both mechanical and chemical disturbances were applied simultaneously, but all disturbances increased the abundance of culturable AM fungi. Our study demonstrates that although chemical and mechanical forms of disturbance favor different AM fungal families, existing information about family-level characteristics may not adequately characterize the life history strategies of AM fungus species.


Assuntos
Glomeromycota , Herbicidas , Micobioma , Micorrizas , Micorrizas/fisiologia , Solo/química , Pradaria , Herbicidas/farmacologia , Microbiologia do Solo
2.
Mycorrhiza ; 33(3): 211-220, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36786883

RESUMO

The use of arbuscular mycorrhizal (AM) fungal inoculants as a means to promote plant growth is gaining momentum worldwide. Although there is an increasing number of commercial products available for various applications, the quality of these remains uncertain. We determined the AM fungal species composition in eleven inoculants from four producers by using DNA metabarcoding and compared them to the AM fungal species declared on the product labels. Our DNA metabarcoding of the inoculants revealed a concerning discrepancy between the declared and detected AM fungal species compositions of the products. While nine products contained at least one declared species, two did not contain any matching species and all inoculants but one contained additional species not declared on the product label. These findings highlight the need for better guidelines and industry standards to ensure consumer protection in the AM fungal inoculum market. Additionally, we call for caution when using commercial AM fungal inoculants in scientific experiments without confirmatory information about their species composition.


Assuntos
Inoculantes Agrícolas , Micorrizas , Micorrizas/genética , Raízes de Plantas/microbiologia
3.
Mycorrhiza ; 33(1-2): 59-68, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36662299

RESUMO

Mycorrhizal fungi represent a potentially abundant carbon resource for soil animals, but their role in soil food webs remains poorly understood. To detect taxa that are trophically linked to the extraradical mycelium of mycorrhizal fungi, we used stable isotope (13C) labelling of whole trees in combination with the in-growth mesh bag technique in two coniferous forests. This allowed us to detect the flux of carbon in the mycelium of mycorrhizal fungi, and consequently in the tissues of soil invertebrates. The mycorrhizal fungal genera constituted 93.5% of reads in mycelium samples from the in-growth mesh bags. All mycelium from in-growth mesh bags and about 32% of the invertebrates sampled (in total 11 taxa) received the 13C label after 45 days of exposure. The extent of feeding of soil invertebrates on the mycelium of mycorrhizal fungi depended on the taxonomic affinity of the animals. The strongest trophic link to the mycorrhiza-derived carbon was detected in Isotomidae (Collembola) and Oppiidae (Oribatida). The label was also observed in the generalist predators, indicating the propagation of mycorrhiza-derived carbon into the higher trophic levels of the soil food web. Higher 13C labelling in the tissues of euedaphic Collembola and Oribatida compared to atmobiotic and hemiedaphic families indicates the importance of mycorrhizal fungi as a food resource for invertebrates in deeper soil horizons.


Assuntos
Micorrizas , Traqueófitas , Animais , Solo , Microbiologia do Solo , Invertebrados , Florestas , Carbono
4.
Mycorrhiza ; 32(5-6): 397-407, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087125

RESUMO

Sustainable agriculture is essential to address global challenges such as climate change and biodiversity loss. Hedgerows enhance aboveground biodiversity and provide ecosystem services, but little is known about their impact on soil biota. Arbuscular mycorrhizal (AM) fungi are one of the key components of belowground biodiversity. We compared the diversity and composition of AM fungal communities at four farmland sites located in Central Spain, where 132 soil samples in total were collected to assess soil physical and chemical properties and the AM fungal communities. We compared the richness (number of AM fungal taxa), taxonomic, functional, and phylogenetic diversity, and structure of the AM fungal communities across three farmland habitat types, namely hedgerows, woody crops (olive groves and vineyard), and herbaceous crops (barley, sunflower, and wheat). Our results showed positive effects of hedgerows on most diversity metrics. Almost 60% of the AM fungal taxa were shared among the three farmland habitat types. Hedgerows increased AM fungal taxonomic richness (31%) and alpha diversity (25%), and especially so compared to herbaceous crops (45% and 28%, respectively). Hedgerows harbored elevated proportions of AM fungi with non-ruderal life-history strategies. AM fungal communities were more similar between hedgerows and woody crops than between hedgerows and adjacent herbaceous crops, possibly because of differences in tillage and fertilization. Unexpectedly, hedgerows reduced phylogenetic diversity, which might be related to more selective associations of AM fungi with woody plants than with herbaceous crops. Overall, the results suggest that planting hedgerows contributes to maintain belowground diversity. Thus, European farmers should plant more hedgerows to attain the goals of the EU Biodiversity Strategy for 2030.


Assuntos
Micorrizas , Agricultura/métodos , Biodiversidade , Produtos Agrícolas/microbiologia , Ecossistema , Fungos , Filogenia , Solo/química , Microbiologia do Solo
5.
Mycorrhiza ; 32(2): 135-144, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35138435

RESUMO

Arbuscular mycorrhizal (AM) fungi are a ubiquitous group of plant symbionts, yet processes underlying their global assembly - in particular the roles of dispersal limitation and historical drivers - remain poorly understood. Because earlier studies have reported niche conservatism in AM fungi, we hypothesized that variation in taxonomic community composition (i.e., unweighted by taxon relatedness) should resemble variation in phylogenetic community composition (i.e., weighted by taxon relatedness) which reflects ancestral adaptations to historical habitat gradients. Because of the presumed strong dispersal ability of AM fungi, we also anticipated that the large-scale structure of AM fungal communities would track environmental conditions without regional discontinuity. We used recently published AM fungal sequence data (small-subunit ribosomal RNA gene) from soil samples collected worldwide to reconstruct global patterns in taxonomic and phylogenetic community variation. The taxonomic structure of AM fungal communities was primarily driven by habitat conditions, with limited regional differentiation, and there were two well-supported clusters of communities - occurring in cold and warm conditions. Phylogenetic structure was driven by the same factors, though all relationships were markedly weaker. This suggests that niche conservatism with respect to habitat associations is weakly expressed in AM fungal communities. We conclude that the composition of AM fungal communities tracks major climatic and edaphic gradients, with the effects of dispersal limitation and historic factors considerably less apparent than those of climate and soil.


Assuntos
Micobioma , Micorrizas , Fungos/genética , Micorrizas/genética , Filogenia , Solo , Microbiologia do Solo
6.
Ecol Lett ; 24(3): 426-437, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33319429

RESUMO

Plants involved in the arbuscular mycorrhizal (AM) symbiosis trade photosynthetically derived carbon for fungal-provided soil nutrients. However, little is known about how plant light demand and ambient light conditions influence root-associating AM fungal communities. We conducted a manipulative field experiment to test whether plants' shade-tolerance influences their root AM fungal communities in open and shaded grassland sites. We found similar light-dependent shifts in AM fungal community structure for experimental bait plant roots and the surrounding soil. Yet, deviation from the surrounding soil towards lower AM fungal beta-diversity in the roots of shade-intolerant plants in shade suggested preferential carbon allocation to specific AM fungi in conditions where plant-assimilated carbon available to fungi was limited. We conclude that favourable environmental conditions widen the plant biotic niche, as demonstrated here with optimal light availability reducing plants' selectivity for specific AM fungi, and promote compatibility with a larger number of AM fungal taxa.


Assuntos
Micobioma , Micorrizas , Raízes de Plantas , Plantas , Solo , Microbiologia do Solo , Simbiose
7.
Oecologia ; 197(3): 685-697, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34716490

RESUMO

Root-associating arbuscular mycorrhizal (AM) fungi foster vegetation recovery in degraded habitats. AM fungi increase nutrient availability for host plants; therefore, their importance is expected to be higher when nutrient availability is low. However, little is known about how small-scale variation in nutrient availability influences plant and AM fungal communities in a stable ecosystem. We conducted a 2-year field study in the understorey of a boreonemoral forest where we examined plant and AM fungal communities at microsites (15 cm diameter) with intact vegetation cover and at disturbed microsites where vegetation was cleared away and soil was sterilized to remove soil biota. We manipulated soil nutrient content (increased with fertilizer, unchanged, or decreased with sucrose addition) and fungal activity (natural or suppressed by fungicide addition) at these microsites. After two vegetation seasons, manipulations with nutrient content resulted in significant, although moderate, differences in the content of soil nutrients (e.g. in soil phosphorus). Suppression of fungal activity resulted in lower richness, abundance and phylogenetic diversity of AM fungal community, independently of microsite type and soil fertility level. Plant species richness and diversity decreased when fungal activity was suppressed at disturbed but not in intact microsites. The correlation between plant and AM fungal communities was not influenced by microsite type or soil fertility. We conclude that small-scale variation in soil fertility and habitat integrity does not influence the interactions between plants and AM fungi. The richness, but not composition, of AM fungal communities recovered fast after small-scale disturbance and supported the recovery of species-rich vegetation.


Assuntos
Micorrizas , Ecossistema , Florestas , Fungos , Filogenia , Raízes de Plantas , Solo , Microbiologia do Solo
8.
Mycorrhiza ; 31(3): 423-430, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33674909

RESUMO

Elevated atmospheric CO2 concentration (eCO2) effects on plants depend on several factors including plant photosynthetic physiology (e.g. C3, C4), soil nutrient availability and plants' co-evolved soil-dwelling fungal symbionts, namely arbuscular mycorrhizal (AM) fungi. Complicated interactions among these components will determine the outcomes for plants. Therefore, clearer understanding is needed of how plant growth and nutrient uptake, along with root-colonising AM fungal communities, are simultaneously impacted by eCO2. We conducted a factorial growth chamber experiment with a C3 and a C4 grass species (± AM fungi and ± eCO2). We found that eCO2 increased plant biomass allocation towards the roots, but only in plants without AM fungi, potentially associated with an eCO2-driven increase in plant nutrient requirements. Furthermore, our data suggest a difference in the identities of root-colonising fungal taxa between ambient CO2 and eCO2 treatments, particularly in the C4 grass species, although this was not statistically significant. As AM fungi are ubiquitous partners of grasses, their response to increasing atmospheric CO2 is likely to have important consequences for how grassland ecosystems respond to global change.


Assuntos
Micorrizas , Dióxido de Carbono , Ecossistema , Fungos , Raízes de Plantas , Plantas , Solo , Simbiose
9.
Mol Ecol ; 28(2): 365-378, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30403423

RESUMO

Arbuscular mycorrhizal (AM) fungi are obligate plant symbionts that have important functions in most terrestrial ecosystems, but there remains an incomplete understanding of host-fungus specificity and the relationships between species and functional groups of plants and AM fungi. Here, we aimed to provide a comprehensive description of plant-AM fungal interactions in a biodiverse semi-natural grassland. We sampled all plant species in a 1,000-m2 homogeneous plot of dry calcareous grassland in two seasons (summer and autumn) and identified root-colonizing AM fungi by SSU rDNA sequencing. In the network of 33 plant and 100 AM fungal species, we found a significant effect of both host plant species and host plant functional group on AM fungal richness and community composition. Comparison with network null models revealed a larger-than-random degree of partner selectivity among plants. Grasses harboured a larger number of AM fungal partners and were more generalist in partner selection, compared with forbs. More generalist partner association and lower specialization were apparent among obligately, compared with facultatively, mycorrhizal plant species and among locally more abundant plant species. This study provides the most complete data set of co-occurring plant and AM fungal taxa to date, showing that at this particular site, the interaction network is assembled non-randomly, with moderate selectivity in associations between plant species and functional groups and their fungal symbionts.


Assuntos
Ecossistema , Micorrizas/genética , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Biodiversidade , DNA Ribossômico/genética , Especificidade de Hospedeiro/genética , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/genética , Poaceae/microbiologia
10.
Ecology ; 100(2): e02575, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30516275

RESUMO

Most studies consider aboveground plant species richness as a representative biodiversity measure. This approach inevitably assumes that the partitioning of total plant species richness into above- and belowground components is constant or at least consistent within and across vegetation types. However, with studies considering belowground plant richness still scarce and completely absent along vegetation gradients, this assumption lacks experimental support. Novel DNA sequencing techniques allow economical, high-throughput species identification of belowground environmental samples, enabling the measurement of the contributions of both above- and belowground plant components to total plant richness. We investigated above- and belowground plant species richness in four vegetation types (birch forest, heath, low alpine tundra, high alpine tundra) at the scale of herbaceous plant neighborhoods (dm) using 454 sequencing of the chloroplast trnL (UAA) intron to determine the plant species richness of environmental root samples and combined it with aboveground data from vegetation surveys to obtain total plant species richness. We correlated the measured plant species richness components with each other and with their respective plant biomass components within and across vegetation types. Total plant species richness exceeded aboveground richness twice on average and by as much as three times in low alpine tundra, indicating that a significant fraction of belowground plant richness cannot be recorded aboveground. More importantly, no consistent relationship among richness components (above- and belowground) was found within or across vegetation types, indicating that aboveground richness alone cannot predict total plant richness in contrasting vegetation types. Finally, no consistent relationship between plant richness and the corresponding biomass component was found. Our results clearly show that aboveground plant richness alone is a poor estimator of total plant species richness within and across different vegetation types. Consequently, it is crucial to account for belowground plant richness in future plant ecological studies in order to validate currently accepted plant richness patterns, as well as to measure potential changes in plant community composition in a changing environment.


Assuntos
Ecossistema , Plantas , Biodiversidade , Biomassa , Análise de Sequência de DNA
11.
Mycorrhiza ; 29(3): 263-275, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31028480

RESUMO

Manioc (Manihot esculenta Crantz) is an important tropical crop that depends on arbuscular mycorrhizal (AM) association for its nutrition. However, little is known about the richness and species composition of AM fungal communities associating with manioc and possible differences across soils and manioc landraces. We studied the diversity and composition of AM fungal communities present in the roots of different manioc landraces and surrounding soils in indigenous shifting cultivation fields on different Amazonian soil types. A total of 126 AM fungal virtual taxa (VT; phylogenetically defined taxonomic units) were recovered from soil and root samples using 454 sequencing of AM fungal SSU rRNA gene amplicons. Different AM fungal communities occurred in different soil types. Minor differences occurred in the composition of AM fungal community associating with different manioc landraces, but AM fungal richness was not different among them. There was a low similarity between the AM fungal communities colonizing manioc roots and those recorded in the soil, independently of differences in soil properties or the manioc landrace evaluated. Rhizophagus manihotis and Glomus VT126 were the most abundant AM fungal species colonizing manioc roots. Contrasting with the results of earlier spore-based investigations, all the AM fungi identified as indicator species of particular manioc landraces were morphologically unknown Glomus species. In conclusion, different manioc landraces growing in common conditions associated with distinct AM fungal communities, whereby AM fungal communities in soils did not necessarily reflect the AM fungal communities colonizing manioc roots.


Assuntos
Manihot/microbiologia , Micobioma , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Agricultura , Colômbia , Micorrizas/classificação , Filogenia
12.
New Phytol ; 220(4): 1236-1247, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29369351

RESUMO

Interactions between communities of plants and arbuscular mycorrhizal (AM) fungi shape fundamental ecosystem properties. Experimental evidence suggests that compositional changes in plant and AM fungal communities should be correlated, but empirical data from natural ecosystems are scarce. We investigated the dynamics of covariation between plant and AM fungal communities during three stages of grassland succession, and the biotic and abiotic factors shaping these dynamics. Plant communities were characterised using vegetation surveys. AM fungal communities were characterised by 454-sequencing of the small subunit rRNA gene and identification against the AM fungal reference database MaarjAM. AM fungal abundance was estimated using neutral-lipid fatty acids (NLFAs). Multivariate correlation analysis (Procrustes) revealed a significant relationship between plant and AM fungal community composition. The strength of plant-AM fungal correlation weakened during succession following cessation of grassland management, reflecting changes in the proportion of plants exhibiting different AM status. Plant-AM fungal correlation was strong when the abundance of obligate AM plants was high, and declined as the proportion of facultative AM plants increased. We conclude that the extent to which plants rely on AM symbiosis can determine how tightly communities of plants and AM fungi are interlinked, regulating community assembly of both symbiotic partners.


Assuntos
Micobioma , Micorrizas/fisiologia , Plantas/microbiologia , Biodiversidade , Solo/química , Microbiologia do Solo
13.
New Phytol ; 220(4): 1222-1235, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29600518

RESUMO

Nitrogen (N) availability is increasing dramatically in many ecosystems, but the influence of elevated N on the functioning of arbuscular mycorrhizal (AM) fungi in natural ecosystems is not well understood. We measured AM fungal community structure and mycorrhizal function simultaneously across an experimental N addition gradient in an alpine meadow that is limited by N but not by phosphorus (P). AM fungal communities at both whole-plant-community (mixed roots) and single-plant-species (Elymus nutans roots) scales were described using pyro-sequencing, and the mycorrhizal functioning was quantified using a mycorrhizal-suppression treatment in the field (whole-plant-community scale) and a glasshouse inoculation experiment (single-plant-species scale). Nitrogen enrichment progressively reduced AM fungal abundance, changed AM fungal community composition, and shifted mycorrhizal functioning towards parasitism at both whole-plant-community and E. nutans scales. N-induced shifts in AM fungal community composition were tightly linked to soil N availability and/or plant species richness, whereas the shifts in mycorrhizal function were associated with the communities of specific AM fungal lineages. The observed changes in both AM fungal community structure and functioning across an N enrichment gradient highlight that N enrichment of ecosystems that are not P-limited can induce parasitic mycorrhizal functioning and influence plant community structure and ecosystem sustainability.


Assuntos
Pradaria , Micobioma , Micorrizas/efeitos dos fármacos , Micorrizas/fisiologia , Nitrogênio/farmacologia , Micobioma/efeitos dos fármacos , Micorrizas/crescimento & desenvolvimento , Plantas/efeitos dos fármacos , Plantas/microbiologia , Solo/química
14.
Glob Chang Biol ; 24(6): 2649-2659, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573508

RESUMO

The arbuscular mycorrhizal (AM) symbiosis is a key plant-microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure.


Assuntos
Ecossistema , Micobioma , Micorrizas/fisiologia , Microbiologia do Solo , DNA Fúngico/análise , Micorrizas/classificação , Micorrizas/genética , Análise de Sequência de DNA
15.
Mycorrhiza ; 28(3): 259-268, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29387979

RESUMO

Arbuscular mycorrhizal (AM) fungal communities vary across habitat types, as well as across different land use types. Most relevant research, however, has focused on agricultural or other severely human-impacted ecosystems. Here, we compared AM fungal communities across six habitat types: calcareous grassland, overgrown ungrazed calcareous grassland, wooded meadow, farmyard lawn, boreonemoral forest, and boreonemoral forest clear-cut, exhibiting contrasting modes of land use. AM fungi in the roots of a single host plant species, Prunella vulgaris, and in its rhizosphere soil were identified using 454-sequencing from a total of 103 samples from 12 sites in Estonia. Mean AM fungal taxon richness per sample did not differ among habitats. AM fungal community composition, however, was significantly different among habitat types. Both abandonment and land use intensification (clearcutting; trampling combined with frequent mowing) changed AM fungal community composition. The AM fungal communities in different habitat types were most similar in the roots of the single host plant species and most distinct in soil samples, suggesting a non-random pattern in host-fungal taxon interactions. The results show that AM fungal taxon composition is driven by habitat type and land use intensity, while the plant host may act as an additional filter between the available and realized AM fungal species pool.


Assuntos
Biodiversidade , Ecossistema , Micorrizas/fisiologia , Prunella/microbiologia , Microbiologia do Solo , Estônia , Florestas , Pradaria , Micorrizas/classificação , Raízes de Plantas/microbiologia
16.
Mol Ecol ; 26(24): 6948-6959, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29110362

RESUMO

Functional diversity in ecosystems has traditionally been studied using aboveground plant traits. Despite the known effect of plant traits on the microbial community composition, their effects on the microbial functional diversity are only starting to be assessed. In this study, the phylogenetic structure of arbuscular mycorrhizal (AM) fungal communities associated with plant species differing in life cycle and growth form, that is, plant life forms, was determined to unravel the effect of plant traits on the functional diversity of this fungal group. The results of the 454 pyrosequencing showed that the AM fungal community composition differed across plant life forms and this effect was dependent on the soil collection date. Plants with ruderal characteristics tended to associate with phylogenetically clustered AM fungal communities. By contrast, plants with resource-conservative traits associated with phylogenetically overdispersed AM fungal communities. Additionally, the soil collected in different seasons yielded AM fungal communities with different phylogenetic dispersion. In summary, we found that the phylogenetic structure, and hence the functional diversity, of AM fungal communities is dependent on plant traits. This finding adds value to the use of plant traits for the evaluation of belowground ecosystem diversity, functions and processes.


Assuntos
Micobioma , Micorrizas/classificação , Filogenia , Plantas/microbiologia , Ecossistema , Estações do Ano , Microbiologia do Solo , Espanha
17.
Mycorrhiza ; 27(8): 761-773, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28730541

RESUMO

The arrival of 454 sequencing represented a major breakthrough by allowing deeper sequencing of environmental samples than was possible with existing Sanger approaches. Illumina MiSeq provides a further increase in sequencing depth but shorter read length compared with 454 sequencing. We explored whether Illumina sequencing improves estimates of arbuscular mycorrhizal (AM) fungal richness in plant root samples, compared with 454 sequencing. We identified AM fungi in root samples by sequencing amplicons of the SSU rRNA gene with 454 and Illumina MiSeq paired-end sequencing. In addition, we sequenced metagenomic DNA without prior PCR amplification. Amplicon-based Illumina sequencing yielded two orders of magnitude higher sequencing depth per sample than 454 sequencing. Initial analysis with minimal quality control recorded five times higher AM fungal richness per sample with Illumina sequencing. Additional quality control of Illumina samples, including restriction of the marker region to the most variable amplicon fragment, revealed AM fungal richness values close to those produced by 454 sequencing. Furthermore, AM fungal richness estimates were not correlated with sequencing depth between 300 and 30,000 reads per sample, suggesting that the lower end of this range is sufficient for adequate description of AM fungal communities. By contrast, metagenomic Illumina sequencing yielded very few AM fungal reads and taxa and was dominated by plant DNA, suggesting that AM fungal DNA is present at prohibitively low abundance in colonised root samples. In conclusion, Illumina MiSeq sequencing yielded higher sequencing depth, but similar richness of AM fungi in root samples, compared with 454 sequencing.


Assuntos
Biodiversidade , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Micorrizas/genética
18.
Mol Ecol ; 25(12): 2816-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27092961

RESUMO

Arbuscular mycorrhizal (AM) fungi are known to exhibit high intra-organism genetic variation. However, information about intra- vs. interspecific variation among the genes commonly used in diversity surveys is limited. Here, the nuclear small subunit (SSU) rRNA gene, internal transcribed spacer (ITS) region and large subunit (LSU) rRNA gene portions were sequenced from 3 to 5 individual spores from each of two isolates of Rhizophagus irregularis and Gigaspora margarita. A total of 1482 Sanger sequences (0.5 Mb) from 239 clones were obtained, spanning ~4370 bp of the ribosomal operon when concatenated. Intrasporal and intra-isolate sequence variation was high for all three regions even though variant numbers were not exhausted by sequencing 12-40 clones per isolate. Intra-isolate nucleotide variation levels followed the expected order of ITS > LSU > SSU, but the values were strongly dependent on isolate identity. Single nucleotide polymorphism (SNP) densities over 4 SNP/kb in the ribosomal operon were detected in all four isolates. Automated operational taxonomic unit picking within the sequence set of known identity overestimated species richness with almost all cut-off levels, markers and isolates. Average intraspecific sequence similarity values were 99%, 96% and 94% for amplicons in SSU, LSU and ITS, respectively. The suitability of the central part of the SSU as a marker for AM fungal community surveys was further supported by its level of nucleotide variation, which is similar to that of the ITS region; its alignability across the entire phylum; its appropriate length for next-generation sequencing; and its ease of amplification in single-step PCR.


Assuntos
DNA Espaçador Ribossômico/genética , Variação Genética , Glomeromycota/genética , Subunidades Ribossômicas Maiores/genética , Subunidades Ribossômicas Menores/genética , DNA Fúngico/genética , Glomeromycota/classificação , Sequenciamento de Nucleotídeos em Larga Escala , Micorrizas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
Mycorrhiza ; 26(7): 735-45, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27246225

RESUMO

While the arbuscular mycorrhizal (AM) symbiosis is known to be widespread in terrestrial ecosystems, there is growing evidence that aquatic plants also form the symbiosis. It has been suggested that symbiosis with AM fungi may represent an important adaptation for isoëtid plants growing on nutrient-poor sediments in oligotrophic lakes. In this study, we address AM fungal root colonization intensity, richness and community composition (based on small subunit (SSU) ribosomal RNA (rRNA) gene sequencing) in five populations of the isoëtid plant species Lobelia dortmanna inhabiting oligotrophic lakes in Southern Sweden. We found that the roots of L. dortmanna hosted rich AM fungal communities and about 15 % of the detected molecular taxa were previously unrecorded. AM fungal root colonization intensity and taxon richness varied along an environmental gradient, being higher in oligotrophic and lower in mesotrophic lakes. The overall phylogenetic structure of this aquatic fungal community differed from that described in terrestrial systems: The roots of L. dortmanna hosted more Archaeosporaceae and fewer Glomeraceae taxa than would be expected based on global data from terrestrial AM fungal communities.


Assuntos
Fungos/genética , Lobelia/microbiologia , Micorrizas/classificação , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Ecossistema , Fungos/classificação , Filogenia , RNA Fúngico/genética , RNA Ribossômico/genética , Suécia
20.
Mycorrhiza ; 26(8): 863-877, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448680

RESUMO

Rubber tree (Hevea brasiliensis) is of major economic importance in Southeast Asia and for small land holders in Thailand in particular. Due to the high value of latex, plantations are expanding into unsuitable areas, such as the northeast province of Thailand where soil fertility is very low and therefore appropriate management practices are of primary importance. Arbuscular mycorrhizal fungi (AMF) contribute to plant growth through a range of mechanisms and could play a key role in a more sustainable management of the rubber plantations. We described the diversity of AMF associated with rubber tree roots in Northeast Thailand in relation to tree age and soil parameters along a chronosequence of rubber tree plantations. Cassava fields were included for comparison. Rubber tree and cassava roots harbored high diversity of AMF (111 Virtual Taxa, VT), including 20 novel VT. AMF VT richness per sample was consistently high (per site mean 16 to 21 VT per sample) along the chronosequence and was not related to soil properties. The composition of AMF communities differed between cassava and rubber tree plantations and was influenced by soil texture and nutrient content (sand, K, P, Ca). AMF community composition gradually shifted with the age of the trees. Our results suggest that the high diversity of AMF in this region is potentially significant for maintaining high functionality of AMF communities.


Assuntos
Hevea/microbiologia , Micorrizas/genética , Raízes de Plantas/microbiologia , Agricultura , Micorrizas/classificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA