Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Environ Geochem Health ; 45(11): 8523-8538, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648955

RESUMO

The distribution of heavy metals in plants (Castanea sativa, Sambucus nigra, Verbascum thapsus, Popolus spp., Salix spp., Acer pseudoplatanus, Robinia pseudoacacia) growing in soils from active and abandoned mining areas is of scientific significance as it allows to recognize their ability to survive in a hostile environment and provide useful indications for phytoremediation operations. In this work, soils from the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg contents (up to 1068 mg kg-1). Eventually, the concentration of Hg in the different parts of the plants growing on these soils was also determined. Most studied soils were dominated by inorganic Hg (up to 92%) while the DHA concentrations were < 151 µg TPF g-1 day-1, suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF), being predominantly characterized by values < 1. Sambucus nigra and Verbascum thapsus had the highest Hg contents (39.42 and 54.54 mg kg-1, respectively). The plant leaves appear to be the main pathways of Hg uptake, as also observed in other mining areas, e.g., Almadèn (Spain), indicating that particulate-Hg and Hg0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.


Assuntos
Mercúrio , Poluentes do Solo , Mercúrio/análise , Monitoramento Ambiental , Solo , Poluentes do Solo/análise , Itália , Plantas
2.
Environ Geochem Health ; 44(7): 1925-1948, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33156488

RESUMO

This study focuses on the geochemical features of the presently discharging thermal and cold springs and on paleofluids from the upstream portion of the Reno river basin (Alto Reno; central-northern Italy). The aim is investigating the primary sources of the modern and fossil fluids and the interactions between deep and shallow aquifers. Paleofluids are from fluid inclusions hosted within euhedral and hopper quartz crystals and consist of a two-phase, liquid-vapor aqueous fluid and a unary CH4 fluid. The aqueous inclusions have constant phase ratios and a calculated salinity of ~ 1.5 wt% NaCleq. They homogenize by bubble disappearance at 100-200 °C, whereas the estimated entrapment depth is ~ 3-5.5 km. The paleofluids likely represent the vestiges of the deep and hot, CH4-rich, Na+-Cl- fluids produced by the interaction between meteoric waters and Triassic and Miocene formations. The modern Na+-Cl-(HCO3-) thermal waters originate from meteoric waters infiltrating SW of the study area, at elevation > 800 m a.s.l., circulating within both the Triassic evaporites and the overlying Miocene turbiditic formations, where salt dissolution/precipitation, sulfate reduction, and production of thermogenic CH4 occur. The equilibrium temperature of the deep fluid source is ~ 170 °C, corresponding to > 5 km depth. Cold springs are Ca2+-HCO3- type and show low amounts of biogenic CO2 and CH4 with no inputs of deep-originated fluids excepting in the immediate surroundings of the thermal area, confirming the lack of significant hydraulic connection between shallow and deep aquifers. We propose a genetic link between the quartz-hosted paleofluid and the thermal waters present in the area.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Água Subterrânea/química , Quartzo , Salinidade , Cloreto de Sódio , Poluentes Químicos da Água/análise
3.
J Environ Sci (China) ; 87: 377-388, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31791510

RESUMO

Up to 1980s, the most used preservative for herbaria specimens was HgCl2, sublimating at ambient air conditions; ionic Hg then reduces to Hg0 (gaseous elemental mercury, GEM) and diffuses throughout poor ventilated environments. High GEM levels may indeed persist for decades, representing a health hazard. In this study, we present new GEM data from the Central Italian Herbarium and Tropical Herbarium Studies Centre of the University of Florence (Italy). These herbaria host one of the largest collection of plants in the world. Here, HgCl2 was documented as plant preservative up to the 1920s. GEM surveys were conducted in July 2013 and July and December 2017, to account for temporal and seasonal variations. Herbaria show GEM concentrations well above those of external locations, with peak levels within specimen storage cabinets, exceeding 50,000 ng/m3. GEM concentrations up to ~7800 ng/m3 were observed where the most ancient collections are stored and no ventilation systems were active. On the contrary, lower GEM concentrations were observed at the first floor. Here, lower and more homogeneously distributed GEM concentrations were measured in 2017 than in 2013 since the air-conditioning system was updated in early 2017. GEM concentrations were similar to other herbaria worldwide and lower than Italian permissible exposure limit of 20,000 ng/m3 (8-hr working day). Our results indicate that after a century from the latest HgCl2 treatment GEM concentrations are still high, i.e., the treatment itself is almost irreversible. Air conditioning and renewing is probably the less expensive and more effective method for GEM lowering.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental , Mercúrio/análise , Itália
4.
J Water Health ; 17(3): 490-498, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31095523

RESUMO

Although in Europe the quality of swimming pools (SPs) is dictated by regulations, microbiological and chemical hazards are described in the literature. Environmental bacteria or toxic disinfection by-product (DBP) compounds may indeed be recovered in waters even after disinfection. We evaluated the water quality from 26 outdoor seasonal SPs of the Versilia district, according to requirements of Regional Decree 54R/2015. In spring 2017, supply and reinstatement waters were collected after shock hyperchlorination (10 mg/L) while in summertime, a second sampling of waters before entering the pools, as well as in the pools, was performed after SPs were open to the public. In all samples, microbiological and chemical parameters were determined as defined by Directive 98/83/EC and the Italian Health Ministry. Microbiological data were within suggested limits. The first chemical analyses showed that in 35% of the feeding-pool seawater samples, the halogenated organic compounds were higher than the maximum permissible concentrations (30 µg/L). Pool waters were then dechlorinated and re-treated with hydrogen peroxide (10 mg/L) to ensure the abatement of DBPs (from 164 ± 107 to 0.9 ± 0.8 µg/L; p = 0.002). Results highlighted the need of self-controlled procedures for the SPs waters to prevent waterborne diseases and suggested hydrogen peroxide as the most appropriate disinfection method.


Assuntos
Desinfetantes/análise , Piscinas/estatística & dados numéricos , Poluentes Químicos da Água/análise , Desinfecção , Itália , Estações do Ano
5.
Environ Geochem Health ; 36(1): 145-57, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23666049

RESUMO

Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (<0.02 ng/g). Concentrations of Hg in stream water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from <0.02 to 0.53 ng/L and were generally elevated compared to the baseline site (<0.02 ng/L). All stream water samples contained concentrations of As (<1.0-6.2 µg/L) and Sb (<0.20-0.37 µg/L) below international drinking water guidelines to protect human health (10 µg/L for As and 20 µg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 µg/L for As and 5.6 µg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052-0.56 µg/g (wet weight), mean of 0.17 µg/g, but only 17 % (9 of 54) exceeded the 0.30 µg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 µg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.


Assuntos
Antimônio/análise , Arsênio/análise , Peixes , Mercúrio/análise , Mercúrio/farmacocinética , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise , Animais , Carpas , Sedimentos Geológicos/análise , Sedimentos Geológicos/química , Itália , Mineração , Músculo Esquelético/química , Rios/química
6.
Environ Geochem Health ; 36(4): 713-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24379158

RESUMO

Mercury is transported globally in the atmosphere mostly in gaseous elemental form (GEM, [Formula: see text]), but still few worldwide studies taking into account different and contrasted environmental settings are available in a single publication. This work presents and discusses data from Argentina, Bolivia, Bosnia and Herzegovina, Brazil, Chile, China, Croatia, Finland, Italy, Russia, South Africa, Spain, Slovenia and Venezuela. We classified the information in four groups: (1) mining districts where this contaminant poses or has posed a risk for human populations and/or ecosystems; (2) cities, where the concentration of atmospheric mercury could be higher than normal due to the burning of fossil fuels and industrial activities; (3) areas with natural emissions from volcanoes; and (4) pristine areas where no anthropogenic influence was apparent. All the surveys were performed using portable LUMEX RA-915 series atomic absorption spectrometers. The results for cities fall within a low GEM concentration range that rarely exceeds 30 ng m(-3), that is, 6.6 times lower than the restrictive ATSDR threshold (200 ng m(-3)) for chronic exposure to this pollutant. We also observed this behavior in the former mercury mining districts, where few data were above 200 ng m(-3). We noted that high concentrations of GEM are localized phenomena that fade away in short distances. However, this does not imply that they do not pose a risk for those working in close proximity to the source. This is the case of the artisanal gold miners that heat the Au-Hg amalgam to vaporize mercury. In this respect, while GEM can be truly regarded as a hazard, because of possible physical-chemical transformations into other species, it is only under these localized conditions, implying exposure to high GEM concentrations, which it becomes a direct risk for humans.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Mercúrio/análise , China , Cidades , Coleta de Dados , Europa (Continente) , Mineração , África do Sul , América do Sul , Erupções Vulcânicas
7.
Sci Total Environ ; 912: 169047, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38061657

RESUMO

The chemical composition of volatile organic compounds (VOCs) in interstitial soil gases from hydrothermal areas is commonly shaped by both deep hydrothermal conditions (e.g., temperature, redox, sulfur fugacity) and shallow secondary processes occurring near the soil-atmosphere interface. Caldara di Manziana and Solfatara di Nepi, i.e., two hydrothermal systems characterized by diverse physicochemical conditions located in the Sabatini Volcanic District and Vicano-Cimino Volcanic District, respectively (Central Italy), were investigated to evaluate the capability of VOCs in soil gases to preserve information from the respective feeding deep fluid reservoirs. Hierarchical cluster analyses and robust principal component analyses allowed recognition of distinct groups of chemical parameters of soil gases collected from the two study areas. The compositional dissimilarities from the free-gas discharges were indeed reflected by the chemical features of soil gases collected from each site, despite the occurrence of shallow processes, e.g., air mixing and microbial degradation processes, affecting VOCs. Four distinct groups of VOCs were recognized suggesting similar sources and/or geochemical behaviors, as follows: (i) S-bearing compounds, whose abundance (in particular that of thiophenes) was strictly dependent on the sulfur fugacity in the feeding system; (ii) C4,5,7+ alkanes, n-hexane, cyclics and alkylated aromatics, related to relatively low-temperature conditions at the gas source; (iii) C2,3 alkanes, benzene, benzaldehyde and phenol, i.e., stable compounds and thermal degradation products; and (iv) aliphatic O-bearing compounds, largely influenced by shallow processes within the soil. However, they maintain a chemical speciation that preserves a signature derived from the supplying deep-fluids, with aldehydes and ketones becoming more enriched after intense interaction of the hypogenic fluids with shallow aquifers. Accordingly, the empirical results of this study suggest that the chemical composition of VOCs in soil gases from hydrothermal areas provides insights into both deep source conditions and fluid circulation dynamics, identifying VOCs as promising geochemical tracers for geothermal exploration.

8.
Environ Res ; 125: 179-87, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23477568

RESUMO

The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/estatística & dados numéricos , Mercúrio/análise , Mineração , Monitoramento Ambiental/métodos , Recuperação e Remediação Ambiental , Itália , Espectrofotometria Atômica/instrumentação , Espectrofotometria Atômica/métodos , Temperatura , Vento
9.
Res Sq ; 2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37131725

RESUMO

The distribution of heavy metals in plants growing in soils from active and abandoned mining areas is of scientific significance as it allows one to recognize their ability to survive in a hostile environment and to provide useful indications for phytoremediation operations. In this work, soils developed in the former Hg-mining area of Abbadia San Salvatore (Tuscany, Central Italy) were analyzed for total, leached Hg, % of organic- and inorganic-related Hg. The dehydrogenase enzyme activity (DHA) was also measured with the aim to evaluate the status of the soil, being characterized by high Hg content. Eventually, the concentration of Hg in the different parts of the plants growing on these soils was analyzed. The soils showed Hg content up to 1068 mg kg - 1 and in most of them is dominated by inorganic Hg (up to 92%). The DHA concentrations were < 151 µg TPF g - 1 day - 1 , suggesting that the presence of Hg is not significantly affecting the enzymatic soil activity. This is also supported by the bioaccumulation factor (BF) that is < 1 in most of the studied plants. Generally speaking, the plant leaves appear to be one of the main pathways of Hg uptake, as also observed in other mining areas, e.g. Almaden (Spain), suggesting that particulate-Hg and Hg 0 are the main forms entering the plant system, the latter derived by the GEM emitted by both the edifices hosting the roasting furnaces and the soils themselves.

10.
Artigo em Inglês | MEDLINE | ID: mdl-35564526

RESUMO

Dissolved and suspended toxic elements in water discharged from abandoned and active mining areas pose several critical issues, since they represent a threat to the environment. In this work, we investigated the water, suspended particulates, and stream sediments of a 2.1 km long creek (Fosso della Chiusa) that is fed by waters draining the galleries of the abandoned Hg mining area of Abbadia San Salvatore (Mt. Amiata, Tuscany, central Italy). The geochemical results show evidence that the studied matrices are characterized by relatively high concentrations of Hg and As, whereas those of Sb are generally close to or below the instrumental detection limit. Independent of the matrices, the concentration of As decreases from the emergence point to the confluence with the Pagliola creek. In contrast, Hg concentrations display more complex behavior, as water and sediment are mainly characterized by concentrations that significantly increase along the water course. According to the geoaccumulation index (Igeo), sediments belong to Class 6 (extremely contaminated) for Hg. The Igeo of As varies from Class 6, close to the emergence, to Class 2 (moderately contaminated), dropping to Class 0 (uncontaminated) at the confluence with the Pagliola creek. Finally, the total mass load of Hg and As entering the Pagliola creek was computed to be 1.3 and 0.5 kg/year, respectively, when a mean flow rate of 40 L/s was considered. The calculated loads are relatively low, but, when the Fosso della Chiusa drainage basin is taken into account, the specific load is comparable to, or even higher than, those of other mining areas.


Assuntos
Arsênio , Mercúrio , Poluentes Químicos da Água , Arsênio/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Mercúrio/análise , Mineração , Rios/química , Água , Poluentes Químicos da Água/análise
11.
Artigo em Inglês | MEDLINE | ID: mdl-36231535

RESUMO

Over the last decades, groundwater resources at global level have suffered a significant deterioration due to nitrate pollution, mainly related to the input of agricultural fertilizers, manure, sewage, and untreated urban and industrial effluents. The most impacted waters are those forming surface and shallow reservoirs, which usually play a key role in supplying waters to civil, agricultural, and industrial activities. The terminal portion of the Metauro River plain, located in central Italy along the Adriatic Sea coastline, hosts a strategic phreatic aquifer that, along with the surface water of the Metauro River, supplies water to the local population (i.e., about 60,000 people). This shallow coastal aquifer experiences a long-lasting story of nitrate contamination since the 1970s when the increase in the use of agricultural fertilizers contributed to very high levels of pollution (NO3- > 100 mg/L). This fact prompted the local authorities to carry out remediation actions that involve a pumping system to inject the NO3--poor waters from the Metauro River course directly into the shallow aquifer. The present work was aimed at defining the contamination of nitrates in this important water resource. The main geochemical characteristics and the temporal evolution of NO3- concentrations (between 2009 and 2020), in the shallow coastal aquifer of the Metauro River plain, were analyzed by means of classical geochemical analyses and multivariate methods accounting for the compositional nature of the data, to assess the efficiency of the in-situ remediation over time.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Fertilizantes/análise , Água Subterrânea/análise , Humanos , Esterco/análise , Nitratos/análise , Óxidos de Nitrogênio/análise , Rios , Esgotos/análise , Água/análise , Poluentes Químicos da Água/análise
12.
FEMS Microbiol Ecol ; 98(10)2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35883234

RESUMO

Although terrestrial hydrothermal systems are considered among the most fascinating environments, how their unique and extreme conditions can affect microorganisms selection and the role in biogeochemical cycles has not yet been well elucidated. A combined geochemical and microbiological exploration in waters and sediments from 10 sampling points along a sharp temperature gradient (15-90°C) within an extremely acidic hydrothermal system (Pisciarelli Spring, Campi Flegrei area, southern Italy) displayed how hydrothermal fluids influence the microbial dynamics. This area was characterized by high levels of reduced gaseous species (e.g. H2S, H2, CH4, CO) and very low pH values (<2.3). Thermodynamic calculations revealed a high microbial catabolic potential in oxidation/reduction reactions of N-, S- and Fe-bearing species. Overall, an increase of the archaeal/bacterial abundance ratio was observed by decreasing temperature and pH values. In particular, Archaea and Bacteria were present in almost equal cell abundance (up to 1.1 × 109 and 9.3 × 108 cell/g, respectively) in the <70°C sampling points (average pH = 2.09); on the contrary, the highest temperature waters (85-90°C; average pH = 2.26) were characterized by a low abundance of archaeal cells. The high-throughput sequencing of the 16S rRNA genes indicated strong differences in archaeal and bacterial communities composition along the temperature gradient. However, the microbiome in this extreme environment was mainly constituted by chemoautotrophic microorganisms that were likely involved in N-, S- and Fe-bearing species transformations (e.g. Acidianus infernus, Ferroplasma acidarmanus, Acidithiobacillus,Sulfobacillus,Thaumarchaeota), in agreement with thermodynamic calculations.


Assuntos
Archaea , Microbiota , Ácidos/metabolismo , Bactérias , Ambientes Extremos , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
13.
Geobiology ; 20(6): 837-856, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35942584

RESUMO

Active hydrothermal travertine systems are ideal environments to investigate how abiotic and biotic processes affect mineralization mechanisms and mineral fabric formation. In this study, a biogeochemical characterization of waters, dissolved gases, and microbial mats was performed together with a mineralogical investigation on travertine encrustations occurring at the outflow channel of a thermal spring. The comprehensive model, compiled by means of TOUGHREACT computational tool from measured parameters, revealed that mineral phases were differently influenced by either abiotic conditions or microbially driven processes. Microbial mats are shaped by light availability and temperature gradient of waters flowing along the channel. Mineralogical features were homogeneous throughout the system, with euhedral calcite crystals, related to inorganic precipitation induced by CO2 degassing, and calcite shrubs associated with organomineralization processes, thus indicating an indirect microbial participation to the mineral deposition (microbially influenced calcite). The microbial activity played a role in driving calcite redissolution processes, resulting in circular pits on calcite crystal surfaces possibly related to the metabolic activity of sulfur-oxidizing bacteria found at a high relative abundance within the biofilm community. Sulfur oxidation might also explain the occurrence of gypsum crystals embedded in microbial mats, since gypsum precipitation could be induced by a local increase in sulfate concentration mediated by S-oxidizing bacteria, regardless of the overall undersaturated environmental conditions. Moreover, the absence of gypsum dissolution suggested the capability of microbial biofilm in modulating the mobility of chemical species by providing a protective envelope on gypsum crystals.


Assuntos
Fontes Termais , Compostos Alílicos , Bactérias/metabolismo , Biofilmes , Carbonato de Cálcio/química , Sulfato de Cálcio/química , Dióxido de Carbono/metabolismo , Fontes Termais/microbiologia , Minerais/metabolismo , Sulfetos , Enxofre/metabolismo
14.
Waste Manag Res ; 29(1): 50-8, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041416

RESUMO

Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.


Assuntos
Benzeno/análise , Eliminação de Resíduos , Poluentes do Solo/análise , Tolueno/análise , Gerenciamento de Resíduos , Biodegradação Ambiental , Dióxido de Carbono/análise , Recuperação e Remediação Ambiental , Cromatografia Gasosa-Espectrometria de Massas/métodos , Itália , Metano/análise , Solo/análise , Poluentes do Solo/química , Resíduos/análise
15.
Sci Total Environ ; 785: 147268, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33940415

RESUMO

Rivers are dynamic and sensitive systems that change their chemical composition from source to mouth. This is due to the influence of a set of variables controlled by hydro-litho-eco-atmospheric processes and anthropic pressures which are, in turn, affected by catchment attributes. This work proposes a new way of thinking about river geochemistry focused on environmental interconnections rather than single chemical variables. Abrupt changes in the system state (composition) of a certain environmental media, driven by perturbations, may trigger Geochemical Regime Shifts (GRSs). This eventuality is explored in the Tiber River (central Italy) chemistry by Compositional Data Analysis, robust Principal Component Analysis and score-distance graphs. Data variability and the interlinks between response and forcing variables are investigated for different drained areas. A potential GRS is detected for major elements in the lower reaches resulting from a threshold-like state response caused by lithological forcing. On the contrary, trace elements respond gradually to environmental drivers, showing no abrupt changes. The findings outline mechanisms and factors influencing the river's self-restoring capability at a basin-wide scale, providing a better comprehension of the circumstances controlling the equilibrium dynamics of river water systems.

16.
Sci Total Environ ; 795: 148877, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252774

RESUMO

The outbreak of COVID-19 pandemic was accompanied by global mobility restrictions and slowdown in manufacturing activities. Accordingly, cities experienced a significant decrease of CO2 emissions. In this study, continuous measurements of CO2 fluxes, atmospheric CO2 concentrations and δ13C-CO2 values were performed in the historical center of Florence (Italy) before, during and after the almost two-month long national lockdown. The temporal trends of the analyzed parameters, combined with the variations in emitting source categories (from inventory data), evidenced a fast response of flux measurements to variations in the strength of the emitting sources. Similarly, the δ13C-CO2 values recorded the change in the prevailing sources contributing to urban atmospheric CO2, confirming the effectiveness of carbon isotopic data as geochemical tracers for identifying and quantifying the relative contributions of emitting sources. Although the direct impact of restriction measurements on CO2 concentrations was less clear due to seasonal trends and background fluctuations, an in-depth analysis of the daily local CO2 enhancement with respect to the background values revealed a progressive decrease throughout the lockdown phase at the end of the heating season (>10 ppm), followed by a net increase (ca. 5 ppm) with the resumption of traffic. Finally, the investigation of the shape of the frequency distribution of the analyzed variables revealed interesting aspects concerning the dynamics of the systems.


Assuntos
Poluentes Atmosféricos , COVID-19 , Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , SARS-CoV-2
17.
Commun Biol ; 4(1): 845, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234272

RESUMO

The contribution of oxic methane production to greenhouse gas emissions from lakes is globally relevant, yet uncertainties remain about the levels up to which methanogenesis can counterbalance methanotrophy by leading to CH4 oversaturation in productive surface waters. Here, we explored the biogeochemical and microbial community variation patterns in a meromictic soda lake, in the East African Rift Valley (Kenya), showing an extraordinarily high concentration of methane in oxic waters (up to 156 µmol L-1). Vertical profiles of dissolved gases and their isotopic signature indicated a biogenic origin of CH4. A bloom of Oxyphotobacteria co-occurred with abundant hydrogenotrophic and acetoclastic methanogens, mostly found within suspended aggregates promoting the interactions between Bacteria, Cyanobacteria, and Archaea. Moreover, aggregate sedimentation appeared critical in connecting the lake compartments through biomass and organic matter transfer. Our findings provide insights into understanding how hydrogeochemical features of a meromictic soda lake, the origin of carbon sources, and the microbial community profiles, could promote methane oversaturation and production up to exceptionally high rates.


Assuntos
Archaea/crescimento & desenvolvimento , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Lagos/microbiologia , Metano/análise , Archaea/classificação , Archaea/genética , Biomassa , Cianobactérias/classificação , Cianobactérias/genética , Cromatografia Gasosa-Espectrometria de Massas , Geografia , Gases de Efeito Estufa/análise , Quênia , RNA Ribossômico 16S/genética
18.
Int J Mol Sci ; 11(4): 1434-57, 2010 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-20480029

RESUMO

The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.


Assuntos
Furanos/química , Gases/química , Tiofenos/química , Erupções Vulcânicas/análise , Dióxido de Carbono/análise , Cromatografia Gasosa , Sulfeto de Hidrogênio/análise , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química
19.
Front Microbiol ; 10: 2238, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681186

RESUMO

Direct and indirect effects of extremely high geogenic CO2 levels, commonly occurring in volcanic and hydrothermal environments, on biogeochemical processes in soil are poorly understood. This study investigated a sinkhole in Italy where long-term emissions of thermometamorphic-derived CO2 are associated with accumulation of carbon in the topsoil and removal of inorganic carbon in low pH environments at the bottom of the sinkhole. The comparison between interstitial soil gasses and those collected in an adjacent bubbling pool and the analysis of the carbon isotopic composition of CO2 and CH4 clearly indicated the occurrence of CH4 oxidation and negligible methanogenesis in soils at the bottom of the sinkhole. Extremely high CO2 concentrations resulted in higher microbial abundance (up to 4 × 109 cell g-1 DW) and a lower microbial diversity by favoring bacteria already reported to be involved in acetogenesis in mofette soils (i.e., Firmicutes, Chloroflexi, and Acidobacteria). Laboratory incubations to test the acetogenic and methanogenic potential clearly showed that all the mofette soil supplied with hydrogen gas displayed a remarkable CO2 fixation potential, primarily due to the activity of acetogenic microorganisms. By contrast, negligible production of acetate occurred in control tests incubated with the same soils, under identical conditions, without the addition of hydrogen. In this study, we report how changes in diversity and functions of the soil microbial community - induced by high CO2 concentration - create peculiar biogeochemical profile. CO2 emission affects carbon cycling through: (i) inhibition of the decomposition of the organic carbon and (ii) promotion of CO2-fixation via the acetyl-CoA pathway. Sites naturally exposed to extremely high CO2 levels could potentially represent an untapped source of microorganisms with unique capabilities to catalytically convert CO2 into valuable organic chemicals and fuels.

20.
PLoS One ; 13(3): e0193914, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29509779

RESUMO

Volcanic lakes are characterized by physicochemical favorable conditions for the development of reservoirs of C-bearing greenhouse gases that can be dispersed to air during occasional rollover events. By combining a microbiological and geochemical approach, we showed that the chemistry of the CO2- and CH4-rich gas reservoir hosted within the meromictic Lake Averno (Campi Flegrei, southern Italy) are related to the microbial niche differentiation along the vertical water column. The simultaneous occurrence of diverse functional groups of microbes operating under different conditions suggests that these habitats harbor complex microbial consortia that impact on the production and consumption of greenhouse gases. In the epilimnion, the activity of aerobic methanotrophic bacteria and photosynthetic biota, together with CO2 dissolution at relatively high pH, enhanced CO2- and CH4 consumption, which also occurred in the hypolimnion. Moreover, results from computations carried out to evaluate the dependence of the lake stability on the CO2/CH4 ratios, suggested that the water density vertical gradient was mainly controlled by salinity and temperature, whereas the effect of dissolved gases was minor, excepting if extremely high increases of CH4 are admitted. Therefore, biological processes, controlling the composition of CO2 and CH4, contributed to stabilize the lake stratification of the lake. Overall, Lake Averno, and supposedly the numerous worldwide distributed volcanic lakes having similar features (namely bio-activity lakes), acts as a sink for the CO2 supplied from the hydrothermal/magmatic system, displaying a significant influence on the local carbon budget.


Assuntos
Dióxido de Carbono , Lagos , Erupções Vulcânicas , Geologia , Itália , Lagos/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA