Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Brain Inj ; 31(13-14): 1820-1829, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29166203

RESUMO

OBJECTIVE: To investigate the clinical management and medical follow-up of patients with mild traumatic brain injury (mTBI) presenting to emergency departments (EDs). METHODS: Overall, 168 adult patients with mTBI from the prospective, multicentre Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) Pilot study with Glasgow Coma Scale (GCS) 13-15, no polytrauma and alive at six months were included. Predictors for hospital admission, three-month follow-up referral and six-month functional disability (Glasgow Outcome Scale-Extended (GOSE) ≤ 6) were analysed using multivariable regression. RESULTS: Overall, 48% were admitted to hospital, 22% received three-month referral and 27% reported six-month functional disability. Intracranial pathology on ED head computed tomography (multivariable odds ratio (OR) = 81.08, 95% confidence interval (CI) [10.28-639.36]) and amnesia (>30-minutes: OR = 5.27 [1.75-15.87]; unknown duration: OR = 4.43 [1.26-15.62]) predicted hospital admission. Older age (per-year OR = 1.03 [1.01-1.05]) predicted three-month referral, while part-time/unemployment predicted lack of referral (OR = 0.17 [0.06-0.50]). GCS < 15 (OR = 2.46 [1.05-5.78]) and prior history of seizures (OR = 3.62 [1.21-10.89]) predicted six-month functional disability, while increased education (per-year OR = 0.86 [0.76-0.97]) was protective. CONCLUSIONS: Clinical factors modulate triage to admission, while demographic/socioeconomic elements modulate follow-up care acquisition; six-month functional disability associates with both clinical and demographic/socioeconomic variables. Improving triage to acute and outpatient care requires further investigation to optimize resource allocation and outcome after mTBI. ClinicalTrials.gov registration: NCT01565551.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Pessoas com Deficiência/psicologia , Administração Hospitalar , Resultado do Tratamento , Adulto , Avaliação da Deficiência , Pessoas com Deficiência/reabilitação , Serviço Hospitalar de Emergência , Feminino , Seguimentos , Escala de Resultado de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Adulto Jovem
2.
J Neurotrauma ; 40(21-22): 2362-2375, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37341031

RESUMO

Research in severe traumatic brain injury (TBI) has historically been limited by studies with relatively small sample sizes that result in low power to detect small, yet clinically meaningful outcomes. Data sharing and integration from existing sources hold promise to yield larger more robust sample sizes that improve the potential signal and generalizability of important research questions. However, curation and harmonization of data of different types and of disparate provenance is challenging. We report our approach and experience integrating multiple TBI data sets containing collected physiological data, including both expected and unexpected challenges encountered in the integration process. Our harmonized data set included data on 1536 patients from the Citicoline Brain Injury Treatment Trial (COBRIT), Effect of erythropoietin and transfusion threshold on neurological recovery after traumatic brain injury: a randomized clinical trial (EPO Severe TBI), BEST-TRIP, Progesterone for the Treatment of Traumatic Brain Injury III Clinical Trial (ProTECT III), Transforming Research and Clinical Knowledge in Traumatic brain Injury (TRACK-TBI), Brain Oxygen Optimization in Severe Traumatic Brain Injury Phase-II (BOOST-2), and Ben Taub General Hospital (BTGH) Research Database studies. We conclude with process recommendations for data acquisition for future prospective studies to aid integration of these data with existing studies. These recommendations include using common data elements whenever possible, a standardized recording system for labeling and timing of high-frequency physiological data, and secondary use of studies in systems such as Federal Interagency Traumatic Brain Injury Research Informatics System (FITBIR), to engage investigators who collected the original data.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Estudos Prospectivos , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Citidina Difosfato Colina/uso terapêutico , Disseminação de Informação
3.
J Neurotrauma ; 40(3-4): 337-348, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36097759

RESUMO

The effects of traumatic brain injury (TBI) are difficult to measure in longitudinal cohort studies, because disparate pre-injury characteristics and injury mechanisms produce variable impairment profiles and recovery trajectories. In preparation for the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, which followed patients with injuries ranging from uncomplicated mild TBI to coma, we designed a multi-dimensional Flexible outcome Assessment Battery (FAB). The FAB relies on a decision-making algorithm that assigns participants to a Comprehensive (CAB) or Abbreviated Assessment Battery (AAB) and guides test selection across all phases of recovery. To assess feasibility of the FAB, we calculated the proportion of participants followed at 2 weeks (2w) and at 3, 6, and 12 months (3m, 6m, 12m) post-injury who completed the FAB and received valid scores. We evaluated utility of the FAB by examining differences in 6m and 12m Glasgow Outcome Scale-Extended (GOSE) scores between participant subgroups derived from the FAB-enabled versus traditional approach to outcome assessment applied at 2w. Among participants followed at 2w (n = 2094), 3m (n = 1871), 6m (n = 1736), and 12m (n = 1607) post-injury, 95-99% received valid completion scores on the FAB, in full or in part, either in person or by telephone. Level of function assessed by the FAB-enabled approach at 2w was associated with 6m and 12m GOSE scores (proportional odds p < 0.001). These findings suggest that the participant classification methodology afforded by the FAB may enable more effective data collection to improve detection of natural history changes and TBI treatment effects.


Assuntos
Lesões Encefálicas Traumáticas , Humanos , Estudos Longitudinais , Estudos de Viabilidade , Lesões Encefálicas Traumáticas/diagnóstico , Lesões Encefálicas Traumáticas/terapia , Avaliação de Resultados em Cuidados de Saúde , Escala de Resultado de Glasgow
4.
Transl Psychiatry ; 13(1): 24, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36693822

RESUMO

Many patients with mild traumatic brain injury (mTBI) are at risk for mental health problems such as posttraumatic stress disorder (PTSD). The objective of this study was to determine whether the polygenic risk for PTSD (or for related mental health disorders or traits including major depressive disorder [MDD] and neuroticism [NEU]) was associated with an increased likelihood of PTSD in the aftermath of mTBI. We used data from individuals of European ancestry with mTBI enrolled in TRACK-TBI (n = 714), a prospective longitudinal study of level 1 trauma center patients. One hundred and sixteen mTBI patients (16.3%) had probable PTSD (PCL-5 score ≥33) at 6 months post-injury. We used summary statistics from recent GWAS studies of PTSD, MDD, and NEU to generate polygenic risk scores (PRS) for individuals in our sample. A multivariable model that included age, sex, pre-injury history of mental disorder, and cause of injury explained 7% of the variance in the PTSD outcome; the addition of the PTSD-PRS (and five ancestral principal components) significantly increased the variance explained to 11%. The adjusted odds of PTSD in the uppermost PTSD-PRS quintile was nearly four times higher (aOR = 3.71, 95% CI 1.80-7.65) than in the lowest PTSD-PRS quintile. There was no evidence of a statistically significant interaction between PTSD-PRS and prior history of mental disorder, indicating that PTSD-PRS had similar predictive utility among those with and without pre-injury psychiatric illness. When added to the model, neither MDD-PRS nor NEU-PRS were significantly associated with the PTSD outcome. These findings show that the risk for PTSD in the context of mTBI is, in part, genetically influenced. They also raise the possibility that an individual's PRS could be clinically actionable if used-possibly with other non-genetic predictors-to signal the need for enhanced follow-up and early intervention; this precision medicine approach needs to be prospectively studied.


Assuntos
Concussão Encefálica , Transtorno Depressivo Maior , Transtornos de Estresse Pós-Traumáticos , Humanos , Concussão Encefálica/complicações , Transtornos de Estresse Pós-Traumáticos/psicologia , Estudos Prospectivos , Estudos Longitudinais , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/complicações
5.
Neurotrauma Rep ; 4(1): 171-183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974122

RESUMO

The relationship between systemic inflammation and secondary injury in traumatic brain injury (TBI) is complex. We investigated associations between inflammatory markers and clinical confirmation of TBI diagnosis and prognosis. The prospective TRACK-TBI Pilot (Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot) study enrolled TBI patients triaged to head computed tomography (CT) and received blood draw within 24 h of injury. Healthy controls (HCs) and orthopedic controls (OCs) were included. Thirty-one inflammatory markers were analyzed from plasma. Area under the receiver operating characteristic curve (AUC) was used to evaluate discriminatory ability. AUC >0.7 was considered acceptable. Criteria included: TBI diagnosis (vs. OC/HC); moderate/severe vs. mild TBI (Glasgow Coma Scale; GCS); radiographic TBI (CT positive vs. CT negative); 3- and 6-month Glasgow Outcome Scale-Extended (GOSE) dichotomized to death/greater relative disability versus less relative disability (GOSE 1-4/5-8); and incomplete versus full recovery (GOSE <8/ = 8). One-hundred sixty TBI subjects, 28 OCs, and 18 HCs were included. Markers discriminating TBI/OC: HMGB-1 (AUC = 0.835), IL-1b (0.795), IL-16 (0.784), IL-7 (0.742), and TARC (0.731). Markers discriminating GCS 3-12/13-15: IL-6 (AUC = 0.747), CRP (0.726), IL-15 (0.720), and SAA (0.716). Markers discriminating CT positive/CT negative: SAA (AUC = 0.767), IL-6 (0.757), CRP (0.733), and IL-15 (0.724). At 3 months, IL-15 (AUC = 0.738) and IL-2 (0.705) discriminated GOSE 5-8/1-4. At 6 months, IL-15 discriminated GOSE 1-4/5-8 (AUC = 0.704) and GOSE <8/ = 8 (0.711); SAA discriminated GOSE 1-4/5-8 (0.704). We identified a profile of acute circulating inflammatory proteins with potential relevance for TBI diagnosis, severity differentiation, and prognosis. IL-15 and serum amyloid A are priority markers with acceptable discrimination across multiple diagnostic and outcome categories. Validation in larger prospective cohorts is needed. ClinicalTrials.gov Registration: NCT01565551.

6.
J Neurotrauma ; 39(19-20): 1318-1328, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35579949

RESUMO

Diffusion tensor imaging (DTI) literature on single-center studies contains conflicting results regarding acute effects of mild traumatic brain injury (mTBI) on white matter (WM) microstructure and the prognostic significance. This larger-scale multi-center DTI study aimed to determine how acute mTBI affects WM microstructure over time and how early WM changes affect long-term outcome. From Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI), a cohort study at 11 United States level 1 trauma centers, a total of 391 patients with acute mTBI ages 17 to 60 years were included and studied at two weeks and six months post-injury. Demographically matched friends or family of the participants were the control group (n = 148). Axial diffusivity (AD), fractional anisotropy (FA), mean diffusivity (MD), and radial diffusivity (RD) were the measures of WM microstructure. The primary outcome was the Glasgow Outcome Scale Extended (GOSE) score of injury-related functional limitations across broad life domains at six months post-injury. The AD, MD, and RD were higher and FA was lower in mTBI versus friend control (FC) at both two weeks and six months post-injury throughout most major WM tracts of the cerebral hemispheres. In the mTBI group, AD and, to a lesser extent, MD decreased in WM from two weeks to six months post-injury. At two weeks post-injury, global WM AD and MD were both independently associated with six-month incomplete recovery (GOSE <8 vs = 8) even after accounting for demographic, clinical, and other imaging factors. DTI provides reliable imaging biomarkers of dynamic WM microstructural changes after mTBI that have utility for patient selection and treatment response in clinical trials. Continued technological advances in the sensitivity, specificity, and precision of diffusion magnetic resonance imaging hold promise for routine clinical application in mTBI.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Substância Branca , Adolescente , Adulto , Encéfalo/patologia , Concussão Encefálica/diagnóstico por imagem , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Estudos de Coortes , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto Jovem
7.
Neuropsychopharmacology ; 47(13): 2300-2308, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35717463

RESUMO

Several proteins have proven useful as blood-based biomarkers to assist in evaluation and management of traumatic brain injury (TBI). The objective of this study was to determine whether two day-of-injury blood-based biomarkers are predictive of posttraumatic stress disorder (PTSD). We used data from 1143 individuals with mild TBI (mTBI; defined as admission Glasgow Coma Scale [GCS] score 13-15) enrolled in TRACK-TBI, a prospective longitudinal study of level 1 trauma center patients. Plasma glial fibrillary acidic protein (GFAP) and serum high sensitivity C-reactive protein (hsCRP) were measured from blood collected within 24 h of injury. Two hundred and twenty-seven (19.9% of) patients had probable PTSD (PCL-5 score ≥ 33) at 6 months post-injury. GFAP levels were positively associated (Spearman's rho = 0.35, p < 0.001) with duration of posttraumatic amnesia (PTA). There was an inverse association between PTSD and (log)GFAP (adjusted OR = 0.85, 95% CI 0.77-0.95 per log unit increase) levels, but no significant association with (log)hsCRP (adjusted OR = 1.11, 95% CI 0.98-1.25 per log unit increase) levels. Elevated day-of-injury plasma GFAP, a biomarker of glial reactivity, is associated with reduced risk of PTSD after mTBI. This finding merits replication and additional studies to determine a possible neurocognitive basis for this relationship.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Transtornos de Estresse Pós-Traumáticos , Humanos , Proteína Glial Fibrilar Ácida , Concussão Encefálica/complicações , Estudos Prospectivos , Estudos Longitudinais , Proteína C-Reativa , Lesões Encefálicas Traumáticas/complicações , Biomarcadores
8.
J Neurotrauma ; 38(23): 3295-3305, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605668

RESUMO

In nearly all clinical and research contexts, the initial severity of a traumatic brain injury (TBI) is measured using the Glasgow Coma Scale (GCS) total score. The GCS total score however, may not accurately reflect level of consciousness, a critical indicator of injury severity. We investigated the relationship between GCS total scores and level of consciousness in a consecutive sample of 2455 adult subjects assessed with the GCS 69,487 times as part of the multi-center Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study. We assigned each GCS subscale score combination a level of consciousness rating based on published criteria for the following disorders of consciousness (DoC) diagnoses: coma, vegetative state/unresponsive wakefulness syndrome, minimally conscious state, and post-traumatic confusional state, and present our findings using summary statistics and four illustrative cases. Participants had the following characteristics: mean (standard deviation) age 41.9 (17.6) years, 69% male, initial GCS 3-8 = 13%; 9-12 = 5%; 13-15 = 82%. All GCS total scores between 4-14 were associated with more than one DoC diagnosis; the greatest variability was observed for scores of 7-11. Further, a wide range of total scores was associated with identical DoC diagnoses. Importantly, a diagnosis of coma was only possible with GCS total scores of 3-6. The GCS total score does not accurately reflect level of consciousness based on published DoC diagnostic criteria. To improve the classification of patients with TBI and to inform the design of future clinical trials, clinicians and investigators should consider individual subscale behaviors and more comprehensive assessments when evaluating TBI severity.


Assuntos
Transtornos da Consciência/diagnóstico , Escala de Coma de Glasgow/normas , Gravidade do Paciente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Artigo em Inglês | MEDLINE | ID: mdl-33386283

RESUMO

BACKGROUND: Brain volumes in regions such as the hippocampus and amygdala have been associated with risk for the development of posttraumatic stress disorder (PTSD). The objective of this study was to determine whether a set of regional brain volumes, measured by magnetic resonance imaging at 2 weeks following mild traumatic brain injury, were predictive of PTSD at 3 and 6 months after injury. METHODS: Using data from TRACK-TBI (Transforming Research and Clinical Knowledge in TBI), we included patients (N = 421) with Glasgow Coma Scale scores 13-15 assessed after evaluation in the emergency department and at 2 weeks, 3 months, and 6 months after injury. Probable PTSD diagnosis (PTSD Checklist for DSM-5 score, ≥33) was the outcome. FreeSurfer 6.0 was used to perform volumetric analysis of three-dimensional T1-weighted magnetic resonance images at 3T obtained 2 weeks post injury. Brain regions selected a priori for volumetric analyses were insula, hippocampus, amygdala, superior frontal cortex, rostral and caudal anterior cingulate, and lateral and medial orbitofrontal cortices. RESULTS: Overall, 77 (18.3%) and 70 (16.6%) patients had probable PTSD at 3 and 6 months. A composite volume derived as the first principal component incorporating 73.8% of the variance in insula, superior frontal cortex, and rostral and caudal cingulate contributed to the prediction of 3-month (but not 6-month) PTSD in multivariable models incorporating other established risk factors. CONCLUSIONS: Results, while needing replication, provide support for a brain reserve hypothesis of PTSD and proof of principle for how prediction of at-risk individuals might be accomplished to enhance prognostic accuracy and enrich clinical prevention trials for individuals at the highest risk of PTSD following mild traumatic brain injury.


Assuntos
Concussão Encefálica , Transtornos de Estresse Pós-Traumáticos , Tonsila do Cerebelo , Encéfalo/diagnóstico por imagem , Hipocampo/diagnóstico por imagem , Humanos
10.
Artigo em Inglês | MEDLINE | ID: mdl-34046212

RESUMO

INTRODUCTION: Return to work (RTW) is an important milestone of mild traumatic brain injury (mTBI) recovery. The objective of this study was to evaluate whether baseline clinical variables, three-month RTW, and three-month postconcussional symptoms (PCS) were associated with six-month RTW after mTBI. METHODS: Adult subjects from the prospective multicenter Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot study with mTBI (Glasgow Coma Scale 13-15) who were employed at baseline, with completed three-and six-month RTW status, and three-month Acute Concussion Evaluation (ACE), were extracted. Univariate and multivariable analyses were performed for six-month RTW, with focus on baseline employment, three-month RTW, and three-month ACE domains (physical, cognitive, sleep, and/or emotional postconcussional symptoms (PCS)). Odds ratios (OR) and 95% confidence intervals [CI] were reported. Significance was assessed at p < 0.05. RESULTS: In 152 patients aged 40.7 ± 15.0years, 72% were employed full-time at baseline. Three- and six-month RTW were 77.6% and 78.9%, respectively. At three months, 59.2%, 47.4%, 46.1% and 31.6% scored positive for ACE physical, cognitive, sleep, and emotional PCS domains, respectively. Three-month RTW predicted six-month RTW (OR = 19.80, 95% CI [7.61-51.52]). On univariate analysis, scoring positive in any three-month ACE domain predicted inability for six-month RTW (OR = 0.10-0.11). On multivariable analysis, emotional symptoms predicted inability to six-month RTW (OR = 0.19 [0.04-0.85]). Subjects who scored positive in all four ACE domains were more likely to be unable to RTW at six months (4 domains: 58.3%, vs. 0-to-3 domains: 9.5%; multivariable OR = 0.09 [0.02-0.33]). CONCLUSIONS: Three-month post-injury is an important time point at which RTW status and PCS should be assessed, as both are prognostic markers for six-month RTW. Clinicians should be particularly vigilant of patients who present with emotional symptoms, and patients with symptoms across multiple PCS categories, as these patients are at further risk of inability to RTW and may benefit from targeted evaluation and support.

11.
J Neurotrauma ; 38(7): 918-927, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33161875

RESUMO

Systemic inflammation impacts outcome after traumatic brain injury (TBI), but most TBI biomarker studies have focused on brain-specific proteins. C-reactive protein (CRP) is a widely used biomarker of inflammation with potential as a prognostic biomarker after TBI. The Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study prospectively enrolled TBI patients within 24 h of injury, as well as orthopedic injury and uninjured controls; biospecimens were collected at enrollment. A subset of hospitalized participants had blood collected on day 3, day 5, and 2 weeks. High-sensitivity CRP (hsCRP) and glial fibrillary acidic protein (GFAP) were measured. Receiver operating characteristic analysis was used to evaluate the prognostic ability of hsCRP for 6-month outcome, using the Glasgow Outcome Scale-Extended (GOSE). We included 1206 TBI subjects, 122 orthopedic trauma controls (OTCs), and 209 healthy controls (HCs). Longitudinal biomarker sampling was performed in 254 hospitalized TBI subjects and 19 OTCs. hsCRP rose between days 1 and 5 for TBI and OTC subjects, and fell by 2 weeks, but remained elevated compared with HCs (p < 0.001). Longitudinally, hsCRP was significantly higher in the first 2 weeks for subjects with death/severe disability (GOSE <5) compared with those with moderate disability/good recovery (GOSE ≥5); AUC was highest at 2 weeks (AUC = 0.892). Combining hsCRP and GFAP at 2 weeks produced AUC = 0.939 for prediction of disability. Serum hsCRP measured within 2 weeks of TBI is a prognostic biomarker for disability 6 months later. hsCRP may have utility as a biomarker of target engagement for anti-inflammatory therapies.


Assuntos
Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/reabilitação , Proteína C-Reativa/metabolismo , Pessoas com Deficiência/reabilitação , Adulto , Biomarcadores/sangue , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
12.
JAMA Netw Open ; 4(4): e213046, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33822070

RESUMO

Importance: Knowledge of differences in mild traumatic brain injury (mTBI) recovery by sex and age may inform individualized treatment of these patients. Objective: To identify sex-related differences in symptom recovery from mTBI; secondarily, to explore age differences within women, who demonstrate poorer outcomes after TBI. Design, Setting, and Participants: The prospective cohort study Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) recruited 2000 patients with mTBI from February 26, 2014, to July 3, 2018, and 299 patients with orthopedic trauma (who served as controls) from January 26, 2016, to July 27, 2018. Patients were recruited from 18 level I trauma centers and followed up for 12 months. Data were analyzed from August 19, 2020, to March 3, 2021. Exposures: Patients with mTBI (defined by a Glasgow Coma Scale score of 13-15) triaged to head computed tomography in 24 hours or less; patients with orthopedic trauma served as controls. Main Outcomes and Measures: Measured outcomes included (1) the Rivermead Post Concussion Symptoms Questionnaire (RPQ), a 16-item self-report scale that assesses postconcussion symptom severity over the past 7 days relative to preinjury; (2) the Posttraumatic Stress Disorder Checklist for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) (PCL-5), a 20-item test that measures the severity of posttraumatic stress disorder symptoms; (3) the Patient Health Questionnaire-9 (PHQ-9), a 9-item scale that measures depression based on symptom frequency over the past 2 weeks; and (4) the Brief Symptom Inventory-18 (BSI-18), an 18-item scale of psychological distress (split into Depression and Anxiety subscales). Results: A total of 2000 patients with mTBI (1331 men [67%; mean (SD) age, 41.0 (17.3) years; 1026 White (78%)] and 669 women [33%; mean (SD) age, 43.0 (18.5) years; 505 (76%) White]). After adjustment of multiple comparisons, significant TBI × sex interactions were observed for cognitive symptoms (B = 0.76; 5% false discovery rate-corrected P = .02) and somatic RPQ symptoms (B = 0.80; 5% false discovery rate-corrected P = .02), with worse symptoms in women with mTBI than men, but no sex difference in symptoms in control patients with orthopedic trauma. Within the female patients evaluated, there was a significant TBI × age interaction for somatic RPQ symptoms, which were worse in female patients with mTBI aged 35 to 49 years compared with those aged 17 to 34 years (B = 1.65; P = .02) or older than 50 years (B = 1.66; P = .02). Conclusions and Relevance: This study found that women were more vulnerable than men to persistent mTBI-related cognitive and somatic symptoms, whereas no sex difference in symptom burden was seen after orthopedic injury. Postconcussion symptoms were also worse in women aged 35 to 49 years than in younger and older women, but further investigation is needed to corroborate these findings and to identify the mechanisms involved. Results suggest that individualized clinical management of mTBI should consider sex and age, as some women are especially predisposed to chronic postconcussion symptoms even 12 months after injury.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Disfunção Cognitiva/etiologia , Síndrome Pós-Concussão/etiologia , Índice de Gravidade de Doença , Adulto , Idoso , Concussão Encefálica/complicações , Lesões Encefálicas Traumáticas/fisiopatologia , Lesões Encefálicas Traumáticas/psicologia , Disfunção Cognitiva/psicologia , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome Pós-Concussão/psicologia , Estudos Prospectivos , Medição de Risco , Distribuição por Sexo
13.
JAMA Neurol ; 78(8): 982-992, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34228047

RESUMO

Importance: Moderate to severe traumatic brain injury (msTBI) is a major cause of death and disability in the US and worldwide. Few studies have enabled prospective, longitudinal outcome data collection from the acute to chronic phases of recovery after msTBI. Objective: To prospectively assess outcomes in major areas of life function at 2 weeks and 3, 6, and 12 months after msTBI. Design, Setting, and Participants: This cohort study, as part of the Transforming Research and Clinical Knowledge in TBI (TRACK-TBI) study, was conducted at 18 level 1 trauma centers in the US from February 2014 to August 2018 and prospectively assessed longitudinal outcomes, with follow-up to 12 months postinjury. Participants were patients with msTBI (Glasgow Coma Scale scores 3-12) extracted from a larger group of patients with mild, moderate, or severe TBI who were enrolled in TRACK-TBI. Data analysis took place from October 2019 to April 2021. Exposures: Moderate or severe TBI. Main Outcomes and Measures: The Glasgow Outcome Scale-Extended (GOSE) and Disability Rating Scale (DRS) were used to assess global functional status 2 weeks and 3, 6, and 12 months postinjury. Scores on the GOSE were dichotomized to determine favorable (scores 4-8) vs unfavorable (scores 1-3) outcomes. Neurocognitive testing and patient reported outcomes at 12 months postinjury were analyzed. Results: A total of 484 eligible patients were included from the 2679 individuals in the TRACK-TBI study. Participants with severe TBI (n = 362; 283 men [78.2%]; median [interquartile range] age, 35.5 [25-53] years) and moderate TBI (n = 122; 98 men [80.3%]; median [interquartile range] age, 38 [25-53] years) were comparable on demographic and premorbid variables. At 2 weeks postinjury, 36 of 290 participants with severe TBI (12.4%) and 38 of 93 participants with moderate TBI (41%) had favorable outcomes (GOSE scores 4-8); 301 of 322 in the severe TBI group (93.5%) and 81 of 103 in the moderate TBI group (78.6%) had moderate disability or worse on the DRS (total score ≥4). By 12 months postinjury, 142 of 271 with severe TBI (52.4%) and 54 of 72 with moderate TBI (75%) achieved favorable outcomes. Nearly 1 in 5 participants with severe TBI (52 of 270 [19.3%]) and 1 in 3 with moderate TBI (23 of 71 [32%]) reported no disability (DRS score 0) at 12 months. Among participants in a vegetative state at 2 weeks, 62 of 79 (78%) regained consciousness and 14 of 56 with available data (25%) regained orientation by 12 months. Conclusions and Relevance: In this study, patients with msTBI frequently demonstrated major functional gains, including recovery of independence, between 2 weeks and 12 months postinjury. Severe impairment in the short term did not portend poor outcomes in a substantial minority of patients with msTBI. When discussing prognosis during the first 2 weeks after injury, clinicians should be particularly cautious about making early, definitive prognostic statements suggesting poor outcomes and withdrawal of life-sustaining treatment in patients with msTBI.


Assuntos
Lesões Encefálicas Traumáticas/terapia , Atividades Cotidianas , Adulto , Estudos de Coortes , Avaliação da Deficiência , Feminino , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Estado Vegetativo Persistente , Prognóstico , Estudos Prospectivos , Recuperação de Função Fisiológica , Resultado do Tratamento , Suspensão de Tratamento
14.
JAMA Netw Open ; 4(12): e2140191, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34964854

RESUMO

Importance: Posttraumatic epilepsy (PTE) is a recognized sequela of traumatic brain injury (TBI), but the long-term outcomes associated with PTE independent of injury severity are not precisely known. Objective: To determine the incidence, risk factors, and association with functional outcomes and self-reported somatic, cognitive, and psychological concerns of self-reported PTE in a large, prospectively collected TBI cohort. Design, Setting, and Participants: This multicenter, prospective cohort study was conducted as part of the Transforming Research and Clinical Knowledge in Traumatic Brain Injury study and identified patients presenting with TBI to 1 of 18 participating level 1 US trauma centers from February 2014 to July 2018. Patients with TBI, extracranial orthopedic injuries (orthopedic controls), and individuals without reported injuries (eg, friends and family of participants; hereafter friend controls) were prospectively followed for 12 months. Data were analyzed from January 2020 to April 2021. Exposure: Demographic, imaging, and clinical information was collected according to TBI Common Data Elements. Incidence of self-reported PTE was assessed using the National Institute of Neurological Disorders and Stroke Epilepsy Screening Questionnaire (NINDS-ESQ). Main Outcomes and Measures: Primary outcomes included Glasgow Outcome Scale Extended, Rivermead Cognitive Metric (RCM; derived from the Rivermead Post Concussion Symptoms Questionnaire), and the Brief Symptom Inventory-18 (BSI). Results: Of 3296 participants identified as part of the study, 3044 met inclusion criteria, and 1885 participants (mean [SD] age, 41.3 [17.1] years; 1241 [65.8%] men and 644 [34.2%] women) had follow-up information at 12 months, including 1493 patients with TBI; 182 orthopedic controls, 210 uninjured friend controls; 41 patients with TBI (2.8%) and no controls had positive screening results for PTE. Compared with a negative screening result for PTE, having a positive screening result for PTE was associated with presenting Glasgow Coma Scale score (8.1 [4.8] vs.13.5 [3.3]; P < .001) as well as with anomalous acute head imaging findings (risk ratio, 6.42 [95% CI, 2.71-15.22]). After controlling for age, initial Glasgow Coma Scale score, and imaging findings, compared with patients with TBI and without PTE, patients with TBI and with positive PTE screening results had significantly lower Glasgow Outcome Scale Extended scores (mean [SD], 6.1 [1.7] vs 4.7 [1.5]; P < .001), higher BSI scores (mean [SD], 50.2 [10.7] vs 58.6 [10.8]; P = .02), and higher RCM scores (mean [SD], 3.1 [2.6] vs 5.3 [1.9]; P = .002) at 12 months. Conclusions and Relevance: In this cohort study, the incidence of self-reported PTE after TBI was found to be 2.8% and was independently associated with unfavorable outcomes. These findings highlight the need for effective antiepileptogenic therapies after TBI.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Epilepsia Pós-Traumática/epidemiologia , Adulto , Estudos de Coortes , Epilepsia Pós-Traumática/etiologia , Feminino , Escala de Coma de Glasgow , Humanos , Incidência , Masculino , Estudos Prospectivos , Fatores de Risco , Autorrelato , Inquéritos e Questionários , Centros de Traumatologia , Estados Unidos/epidemiologia
15.
J Clin Transl Sci ; 4(4): 354-359, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33244417

RESUMO

BACKGROUND: High-quality data are critical to the entire scientific enterprise, yet the complexity and effort involved in data curation are vastly under-appreciated. This is especially true for large observational, clinical studies because of the amount of multimodal data that is captured and the opportunity for addressing numerous research questions through analysis, either alone or in combination with other data sets. However, a lack of details concerning data curation methods can result in unresolved questions about the robustness of the data, its utility for addressing specific research questions or hypotheses and how to interpret the results. We aimed to develop a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. METHODS: Forty-six experts participated in a modified Delphi process to reach consensus on indicators of data curation that could be used in the design and reporting of studies. RESULTS: We identified 46 indicators that are applicable to the design, training/testing, run time and post-collection phases of studies. CONCLUSION: The Data Acquisition, Quality and Curation for Observational Research Designs (DAQCORD) Guidelines are the first comprehensive set of data quality indicators for large observational studies. They were developed around the needs of neuroscience projects, but we believe they are relevant and generalisable, in whole or in part, to other fields of health research, and also to smaller observational studies and preclinical research. The DAQCORD Guidelines provide a framework for achieving high-quality data; a cornerstone of health research.

16.
Neurotrauma Rep ; 1(1): 32-41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34223528

RESUMO

Polytrauma and traumatic brain injury (TBI) frequently co-occur and outcomes are routinely measured by the Glasgow Outcome Scale-Extended (GOSE). Polytrauma may confound GOSE measurement of TBI-specific outcomes. Adult patients with TBI from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study had presented to a Level 1 trauma center after injury, received head computed tomography (CT) within 24 h, and completed the GOSE at 3 months and 6 months post-injury. Polytrauma was defined as an Abbreviated Injury Score (AIS) ≥3 in any extracranial region. Univariate regressions were performed using known GOSE clinical cutoffs. Multi-variable regressions were performed for the 3- and 6-month GOSE, controlling for known demographic and injury predictors. Of 361 subjects (age 44.9 ± 18.9 years, 69.8% male), 69 (19.1%) suffered polytrauma. By Glasgow Coma Scale (GCS) assessment, 80.1% had mild, 5.8% moderate, and 14.1% severe TBI. On univariate logistic regression, polytrauma was associated with increased odds of moderate disability or worse (GOSE ≤6; 3 month odds ratio [OR] = 2.57 [95% confidence interval (CI): 1.50-4.41; 6 month OR = 1.70 [95% CI: 1.01-2.88]) and death/severe disability (GOSE ≤4; 3 month OR = 3.80 [95% CI: 2.03-7.11]; 6 month OR = 3.33 [95% CI: 1.71-6.46]). Compared with patients with isolated TBI, more polytrauma patients experienced a decline in GOSE from 3 to 6 months (37.7 vs. 24.7%), and fewer improved (11.6 vs. 22.6%). Polytrauma was associated with greater univariate ordinal odds for poorer GOSE (3 month OR = 2.79 [95% CI: 1.73-4.49]; 6 month OR = 1.73 [95% CI: 1.07-2.79]), which was conserved on multi-variable ordinal regression (3 month OR = 3.05 [95% CI: 1.76-5.26]; 6 month OR = 2.04 [95% CI: 1.18-3.42]). Patients with TBI with polytrauma are at greater risk for 3- and 6-month disability compared with those with isolated TBI. Methodological improvements in assessing TBI-specific disability, versus disability attributable to all systemic injuries, will generate better TBI outcomes assessment tools.

17.
J Clin Neurosci ; 75: 149-156, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32173156

RESUMO

Substance use is commonly associated with traumatic brain injury (TBI). We investigate associations between active substance use, peri-injury factors, and outcome after TBI across three U.S. Level I trauma centers. TBI subjects from the prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) with Marshall computed tomography (CT) score 1-3, no neurosurgical procedure/operation, and admission urine toxicology screen (tox+/-) were extracted. Associations between tox+/-, comorbidities, hospital variables, and six-month functional (GOSE) and neuropsychiatric (PCL-C, BSI18, RPQ-13, SWLS) outcomes were analyzed. Multivariable regression was performed for associations significant on univariate analysis with odds ratios (mOR) presented. Significance assessed at p < 0.05. In 133 subjects, tox+/tox- were 29.1%/72.9%. Tox+ was younger (35.5/43.6-years, p = 0.018), trended toward male sex (80.6%/63.9%, p = 0.067), was associated with history of seizures (27.8%/10.3%, p = 0.012), self-reported substance use (44.4%/17.5%, p = 0.001), prior TBI (58.8%/34.1%, p = 0.009), GCS < 15 (69.4%/48.4%, p = 0.031) and blood alcohol level >0.08-mg/dl (55.6%/30.8%, p = 0.022). In CT-negative subjects, tox+ was associated with increased hospital admission (95.7%/66.7%, p = 0.034). At six-months, tox+ was associated with screening positive for post-traumatic stress disorder (PCL-C: 40.0%/15.9%; mOR = 8.24, p = 0.022) and psychiatric symptoms (BSI18: 40.0%/14.3%, mOR = 11.06, p = 0.023). Active substance use in TBI may confound GCS assessment, triage to higher level of care, and be associated with increased six-month neuropsychiatric symptoms. Substance use screening should be integrated into standard emergency/acute care TBI protocols to optimize management and resource utilization. Clinicians should be vigilant in providing education, counselling, and follow-up for TBI patients with substance use.


Assuntos
Lesões Encefálicas Traumáticas/etiologia , Programas de Rastreamento/métodos , Transtornos Relacionados ao Uso de Substâncias/complicações , Toxicologia/métodos , Adulto , Fatores Etários , Concentração Alcoólica no Sangue , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Serviço Hospitalar de Emergência , Feminino , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Fatores Sexuais , Tomografia Computadorizada por Raios X , Centros de Traumatologia , Resultado do Tratamento
18.
Front Neurol ; 10: 343, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024436

RESUMO

Introduction: Over 70% of traumatic brain injuries (TBI) are classified as mild (mTBI), which present heterogeneously. Associations between pre-injury comorbidities and outcomes are not well-understood, and understanding their status as risk factors may improve mTBI management and prognostication. Methods: mTBI subjects (GCS 13-15) from TRACK-TBI Pilot completing 3- and 6-month functional [Glasgow Outcome Scale-Extended (GOSE)] and post-concussive outcomes [Acute Concussion Evaluation (ACE) physical/cognitive/sleep/emotional subdomains] were extracted. Pre-injury comorbidities >10% incidence were included in regressions for functional disability (GOSE ≤ 6) and post-concussive symptoms by subdomain. Odds ratios (OR) and mean differences (B) were reported. Significance was assessed at p < 0.0083 (Bonferroni correction). Results: In 260 subjects sustaining blunt mTBI, mean age was 44.0-years and 70.4% were male. Baseline comorbidities >10% incidence included psychiatric-30.0%, cardiac (hypertension)-23.8%, cardiac (structural/valvular/ischemic)-20.4%, gastrointestinal-15.8%, pulmonary-15.0%, and headache/migraine-11.5%. At 3- and 6-months separately, 30.8% had GOSE ≤ 6. At 3-months, psychiatric (GOSE ≤ 6: OR = 2.75, 95% CI [1.44-5.27]; ACE-physical: B = 1.06 [0.38-1.73]; ACE-cognitive: B = 0.72 [0.26-1.17]; ACE-sleep: B = 0.46 [0.17-0.75]; ACE-emotional: B = 0.64 [0.25-1.03]), headache/migraine (GOSE ≤ 6: OR = 4.10 [1.67-10.07]; ACE-sleep: B = 0.57 [0.15-1.00]; ACE-emotional: B = 0.92 [0.35-1.49]), and gastrointestinal history (ACE-physical: B = 1.25 [0.41-2.10]) were multivariable predictors of worse outcomes. At 6-months, psychiatric (GOSE ≤ 6: OR = 2.57 [1.38-4.77]; ACE-physical: B = 1.38 [0.68-2.09]; ACE-cognitive: B = 0.74 [0.28-1.20]; ACE-sleep: B = 0.51 [0.20-0.83]; ACE-emotional: B = 0.93 [0.53-1.33]), and headache/migraine history (ACE-physical: B = 1.81 [0.79-2.84]) predicted worse outcomes. Conclusions: Pre-injury psychiatric and pre-injury headache/migraine symptoms are risk factors for worse functional and post-concussive outcomes at 3- and 6-months post-mTBI. mTBI patients presenting to acute care should be evaluated for psychiatric and headache/migraine history, with lower thresholds for providing TBI education/resources, surveillance, and follow-up/referrals. Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT01565551.

19.
Lancet Neurol ; 18(10): 953-961, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31451409

RESUMO

BACKGROUND: After traumatic brain injury (TBI), plasma concentration of glial fibrillary acidic protein (GFAP) correlates with intracranial injury visible on CT scan. Some patients with suspected TBI with normal CT findings show pathology on MRI. We assessed the discriminative ability of GFAP to identify MRI abnormalities in patients with normal CT findings. METHODS: TRACK-TBI is a prospective cohort study that enrolled patients with TBI who had a clinically indicated head CT scan within 24 h of injury at 18 level 1 trauma centres in the USA. For this analysis, we included patients with normal CT findings (Glasgow Coma Scale score 13-15) who consented to venepuncture within 24 h post injury and who had an MRI scan 7-18 days post injury. We compared MRI findings in these patients with those of orthopaedic trauma controls and healthy controls recruited from the study sites. Plasma GFAP concentrations (pg/mL) were measured using a prototype assay on a point-of-care platform. We used receiver operating characteristic (ROC) analysis to evaluate the discriminative ability of GFAP for positive MRI scans in patients with negative CT scans over 24 h (time between injury and venepuncture). The primary outcome was the area under the ROC curve (AUC) for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings within 24 h of injury. The Dunn Kruskal-Wallis test was used to compare GFAP concentrations between MRI lesion types with Benjamini-Hochberg correction for multiple comparisons. This study is registered with ClinicalTrials.gov, number NCT02119182. FINDINGS: Between Feb 26, 2014, and June 15, 2018, we recruited 450 patients with normal head CT scans (of whom 330 had negative MRI scans and 120 had positive MRI scans), 122 orthopaedic trauma controls, and 209 healthy controls. AUC for GFAP in patients with CT-negative and MRI-positive findings versus patients with CT-negative and MRI-negative findings was 0·777 (95% CI 0·726-0·829) over 24 h. Median plasma GFAP concentration was highest in patients with CT-negative and MRI-positive findings (414·4 pg/mL, 25-75th percentile 139·3-813·4), followed by patients with CT-negative and MRI-negative findings (74·0 pg/mL, 17·5-214·4), orthopaedic trauma controls (13·1 pg/mL, 6·9-20·0), and healthy controls (8·0 pg/mL, 3·0-14·0; all comparisons between patients with CT-negative MRI-positive findings and other groups p<0·0001). INTERPRETATION: Analysis of blood GFAP concentrations using prototype assays on a point-of-care platform within 24 h of injury might improve detection of TBI and identify patients who might need subsequent MRI and follow-up. FUNDING: National Institute of Neurological Disorders and Stroke and US Department of Defense.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Proteína Glial Fibrilar Ácida/sangue , Imageamento por Ressonância Magnética , Tomografia Computadorizada por Raios X , Adulto , Lesões Encefálicas Traumáticas/sangue , Estudos de Coortes , Feminino , Escala de Coma de Glasgow , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Sensibilidade e Especificidade , Adulto Jovem
20.
Neurol Res ; 41(7): 609-623, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31007155

RESUMO

Introduction: Risk factors for young adults with mTBI are not well understood. Improved understanding of age and sex as risk factors for impaired six-month outcomes in young adults is needed. Methods: Young adult mTBI subjects aged 18-39 years (18-29y; 30-39y) with six-month outcomes were extracted from the Transforming Research and Clinical Knowledge in Traumatic Brain Injury Pilot (TRACK-TBI Pilot) study. Multivariable regressions were performed for outcomes with age, sex, and the interaction factor age-group*sex as variables of interest, controlling for demographic and injury variables. Mean-differences (B) and 95% CIs are reported. Results: One hundred mTBI subjects (18-29y, 70%; 30-39y, 30%; male, 71%; female, 29%) met inclusion criteria. On multivariable analysis, age-group*sex was associated with six-month post-traumatic stress disorder (PTSD; PTSD Checklist-Civilian version); compared with female 30-39y, female 18-29y (B= -19.55 [-26.54, -4.45]), male 18-29y (B= -19.70 [-30.07, -9.33]), and male 30-39y (B= -15.49 [-26.54, -4.45]) were associated with decreased PTSD symptomatology. Female sex was associated with decreased six-month functional outcome (Glasgow Outcome Scale-Extended (GOSE): B= -0.6 [1.0, -0.1]). Comparatively, 30-39y scored higher on six-month nonverbal processing speed (Wechsler Adult Intelligence Scale-Processing Speed Index (WAIS-PSI); B= 11.88, 95% CI [1.66, 22.09]). Conclusions: Following mTBI, young adults aged 18-29y and 30-39y may have different risks for impairment. Sex may interact with age for PTSD symptomatology, with females 30-39y at highest risk. These results may be attributable to cortical maturation, biological response, social modifiers, and/or differential self-report. Confirmation in larger samples is needed; however, prevention and rehabilitation/counseling strategies after mTBI should likely be tailored for age and sex.


Assuntos
Concussão Encefálica/psicologia , Caracteres Sexuais , Adolescente , Adulto , Fatores Etários , Concussão Encefálica/complicações , Concussão Encefálica/diagnóstico , Feminino , Escala de Resultado de Glasgow , Humanos , Masculino , Projetos Piloto , Estudos Prospectivos , Transtornos de Estresse Pós-Traumáticos/complicações , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Transtornos de Estresse Pós-Traumáticos/psicologia , Escalas de Wechsler , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA