Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(5): 294-304, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36653184

RESUMO

Fusarium graminearum causes Fusarium head blight (FHB) on wheat and barley and contaminates grains with various mycotoxins that are toxic to humans and animals. Deoxynivalenol (DON), a type B trichothecene, is an essential virulence factor that is required for F. graminearum to spread within a wheat head. Recently, novel type A trichothecenes NX-2 and NX-3 (NX) have been found in F. graminearum. NX trichothecenes lack a keto group at the C8 position. To determine if NX trichothecenes play a role similar to that of DON during F. graminearum infection, deletion mutants of TRI5, the first gene for trichothecene biosynthesis, were generated from strains PH-1, NRRL46422, and NRRL44211 (hereafter 44211) representing the 15-acetyl-DON, 3-acetyl-DON, and NX chemotypes. No trichothecene production was detected in any of the Δtri5 mutants in cultures or inoculated wheat heads. FHB symptoms were restricted to the inoculated wheat spikelets when point-inoculated with the Δtri5 mutants, confirming the necessity of NX and DON for FHB spread. Furthermore, whole-head dip inoculations revealed significant reductions in disease and fungal biomass in wheat heads inoculated with 44211Δtri5 compared with 44211. Introduction of the native 44211 TRI5 and a Trichoderma arundinaceum TRI5 ortholog in the 44211Δtri5 mutant complemented trichothecene production in vitro; however, introducing both TRI5 partially restored wild-type levels of NX in infected heads. Our results demonstrate that NX trichothecenes play an important role in Fusarium graminearum initial infection as well as FHB spread. Thus, TRI5 may serve as an ideal target to control plant infection, FHB spread, and mycotoxin production simultaneously. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Fusarium , Micotoxinas , Humanos , Triticum/microbiologia , Fusarium/genética , Doenças das Plantas/microbiologia
2.
Plant Dis ; 107(9): 2687-2700, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36774561

RESUMO

In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.


Assuntos
Fusarium , Micotoxinas , Tricotecenos , Humanos , Tricotecenos/metabolismo , Micotoxinas/metabolismo , Canadá
3.
Plant Dis ; 106(2): 612-622, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34569826

RESUMO

Mango malformation disease (MMD) caused by Fusarium spp. is an important limiting factor in most production areas worldwide. Fusarium mexicanum and F. pseudocircinatum have been reported as causing MMD in Mexico. These two pathogens also cause a similar disease in Swietenia macrophylla (big-leaf mahogany malformation disease) in central western Mexico, and F. pseudocircinatum was recently reported as causing malformation disease in Tabebuia rosea (rosy trumpet) in the same region. These studies suggest that additional plant species, including weeds, might be hosts of these pathogens. The role that weed hosts might have in the disease cycle is unknown. The objectives of this work were to recover Fusarium isolates from understory vegetation in mango orchards with MMD, identify the Fusarium isolates through DNA sequence data, and determine whether F. mexicanum is capable of inducing disease in the weedy legume Senna uniflora (oneleaf senna). Additional objectives in this work were to compare Fusarium isolates recovered from weeds and mango trees in the same orchards by characterizing their phylogenetic relationships, assessing in vitro production of mycotoxins, and identifying their mating type idiomorph. A total of 59 Fusarium isolates from five species complexes were recovered from apical and lateral buds from four weed species. Two of the species within the F. fujikuroi species complex are known to cause MMD in Mexico. Trichothecene production was detected in five isolates, including F. sulawense and F. irregulare in the F. incarnatum-equiseti species complex and F. boothii in the F. sambucinum species complex. Both mating types were present among mango and weed isolates. This is the first report of herbaceous hosts harboring Fusarium species that cause mango malformation in Mexico. The information provided should prove valuable for further study of the epidemiological role of weeds in MMD and help manage the disease.


Assuntos
Fusarium , Doenças das Plantas/microbiologia , Plantas Daninhas/microbiologia , Árvores/microbiologia , Fusarium/genética , México , Filogenia
4.
Am J Respir Cell Mol Biol ; 64(2): 235-246, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33253593

RESUMO

Pulmonary fibrosis is a progressive lung disease characterized by myofibroblast accumulation and excessive extracellular matrix deposition. We sought to investigate the role of FKBP13 (13-kD FK506-binding protein), an endoplasmic reticulum-resident molecular chaperone, in various forms of pulmonary fibrosis. We first characterized the gene and protein expression of FKBP13 in lung biopsy specimens from 24 patients with idiopathic pulmonary fibrosis and 17 control subjects. FKBP13 expression was found to be elevated in the fibrotic regions of idiopathic pulmonary fibrosis lung tissues and correlated with declining forced vital capacity and dyspnea severity. FKBP13 expression was also increased in lung biopsy specimens of patients with hypersensitivity pneumonitis, rheumatoid arthritis, and sarcoidosis-associated interstitial lung disease. We next evaluated the role of this protein using FKBP13-/- mice in a bleomycin model of pulmonary fibrosis. Animals were assessed for lung function and histopathology at different stages of lung injury including the inflammatory (Day 7), fibrotic (Day 21), and resolution (Day 50) phases. FKBP13-/- mice showed increased infiltration of inflammatory cells and cytokines at Day 7, increased lung elastance and fibrosis at Day 21, and impaired resolution of fibrosis at Day 50. These changes were associated with an increased number of cells that stained positive for TUNEL and cleaved caspase 3 in the FKBP13-/- lungs, indicating a heightened cellular sensitivity to bleomycin. Our findings suggest that FKBP13 is a potential biomarker for severity of interstitial lung diseases and that it has a biologically relevant role in protecting mice against bleomycin-induced injury, inflammation, and fibrosis.


Assuntos
Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/patologia , Proteínas de Ligação a Tacrolimo/metabolismo , Regulação para Cima/fisiologia , Animais , Biomarcadores/metabolismo , Biópsia/métodos , Bleomicina/efeitos adversos , Citocinas/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Feminino , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Inflamação/metabolismo , Inflamação/patologia , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Índice de Gravidade de Doença , Regulação para Cima/efeitos dos fármacos
5.
Phytopathology ; 111(11): 2080-2087, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33823648

RESUMO

Fusarium graminearum is the causal agent of Fusarium head blight (FHB), which reduces crop yield and contaminates grains with poisonous trichothecene mycotoxins, including deoxynivalenol (DON). DON functions as an important virulence factor that promotes FHB spread in wheat; therefore, reducing DON production will decrease yield losses to FHB and increase food safety. Recent progress in the topical application of double-stranded RNA (dsRNA) to reduce F. graminearum infection has provided encouraging results. In this study, we designed and synthesized dsRNA targeting the transcription factor TRI6 (TRI6-dsRNA), which is a key regulator of DON biosynthesis. The expression of F. graminearum TRI6 was significantly lower in detached wheat heads treated with TRI6-dsRNA solution compared with the controls. Furthermore, TRI6-dsRNA treatments reduced disease and DON accumulation in inoculated detached wheat heads. Therefore, topical applications of TRI6-dsRNA on wheat heads of intact plants were assessed for their ability to reduce FHB and DON under growth chamber and greenhouse conditions. When wheat heads were treated with TRI6-dsRNA solution in growth chamber conditions, TRI6-dsRNA treatments failed to prevent FHB spread. However, when wheat heads were treated with TRI6-dsRNA solution under greenhouse conditions, FHB and DON were significantly reduced, and infection was restricted to the inoculated floret. In addition, addition of TRI6-dsRNA to toxin induction liquid media had no effect on F. graminearum 15-ADON production. Our study demonstrates that the efficacy of dsRNA applications is strongly dependent on application methods and environmental conditions.


Assuntos
Fusarium , Micotoxinas , Fusarium/genética , Doenças das Plantas , RNA de Cadeia Dupla/genética
6.
Proc Natl Acad Sci U S A ; 115(5): E944-E953, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29339522

RESUMO

Lymphangioleiomyomatosis (LAM), a rare disease of women, is associated with cystic lung destruction resulting from the proliferation of abnormal smooth muscle-like LAM cells with mutations in the tuberous sclerosis complex (TSC) genes TSC1 and/or TSC2 The mutant genes and encoded proteins are responsible for activation of the mechanistic target of rapamycin (mTOR), which is inhibited by sirolimus (rapamycin), a drug used to treat LAM. Patients who have LAM may also be treated with bronchodilators for asthma-like symptoms due to LAM. We observed stabilization of forced expiratory volume in 1 s over time in patients receiving sirolimus and long-acting beta-agonists with short-acting rescue inhalers compared with patients receiving only sirolimus. Because beta-agonists increase cAMP and PKA activity, we investigated effects of PKA activation on the mTOR pathway. Human skin TSC2+/- fibroblasts or LAM lung cells incubated short-term with isoproterenol (beta-agonist) showed a sirolimus-independent increase in phosphorylation of S6, a downstream effector of the mTOR pathway, and increased cell growth. Cells incubated long-term with isoproterenol, which may lead to beta-adrenergic receptor desensitization, did not show increased S6 phosphorylation. Inhibition of PKA blocked the isoproterenol effect on S6 phosphorylation. Thus, activation of PKA by beta-agonists increased phospho-S6 independent of mTOR, an effect abrogated by beta-agonist-driven receptor desensitization. In agreement, retrospective clinical data from patients with LAM suggested that a combination of bronchodilators in conjunction with sirolimus may be preferable to sirolimus alone for stabilization of pulmonary function.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Linfangioleiomiomatose/tratamento farmacológico , Linfangioleiomiomatose/metabolismo , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Broncodilatadores/farmacologia , Domínio Catalítico , Proliferação de Células/efeitos dos fármacos , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Progressão da Doença , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Isoproterenol/farmacologia , Pessoa de Meia-Idade , Análise Multivariada , Fosforilação , Testes de Função Respiratória , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Pele/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
7.
Plant Dis ; 105(10): 2822-2829, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33904328

RESUMO

Tabebuia rosea (rosy trumpet) is an economically important neotropical tree in Mexico that is highly valued for the quality of its wood, which is used for furniture, crafts, and packing, and for its use as an ornamental and shade tree in parks and gardens. During surveys conducted in the lower Balsas River Basin region in the states of Guerrero and Michoacán, symptoms of floral malformation were detected in T. rosea trees. The main objectives of this study were to describe this new disease, to determine its causal agent, and to identify it using DNA sequence data. A second set of objectives was to analyze the phylogenetic relationship of the causal agent to Fusarium spp. associated with Swietenia macrophylla trees with malformation surveyed in the same region and to compare mycotoxin production and the mating type idiomorphs of fusaria recovered from T. rosea and S. macrophylla. Tabebuia rosea showed malformed inflorescences with multiple tightly curled shoots and shortened internodes. A total of 31 Fusarium isolates recovered from symptomatic T. rosea (n = 20) and S. macrophylla (n = 11) trees were identified by molecular analysis as Fusarium pseudocircinatum. Pathogenicity tests showed that isolates of F. pseudocircinatum recovered from T. rosea induced malformation in inoculated T. rosea seedlings. Eighteen F. pseudocircinatum isolates were tested for their ability to produce mycotoxins and other secondary metabolites. Moniliformin, fusaric acid, bikaverin, beauvericin, aurofusarin. and 8-O-methylbostrycoidin were produced by at least one strain of the 18 isolates tested. A multiplex PCR assay for mating type idiomorph revealed that 22 F. pseudocircinatum isolates were MAT1-1 and that 9 were MAT1-2. Here, we report a new disease of T. rosea in Mexico caused by F. pseudocircinatum.


Assuntos
Fusarium , Doenças das Plantas/microbiologia , Tabebuia , Fusarium/genética , Fusarium/patogenicidade , México , Filogenia , Tabebuia/microbiologia
8.
Fungal Genet Biol ; 144: 103466, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32956810

RESUMO

Pseudoflower formation is arguably the rarest outcome of a plant-fungus interaction. Here we report on a novel putative floral mimicry system in which the pseudoflowers are composed entirely of fungal tissues in contrast to modified leaves documented in previous mimicry systems. Pseudoflowers on two perennial Xyris species (yellow-eyed grass, X. setigera and X. surinamensis) collected from savannas in Guyana were produced by Fusarium xyrophilum, a novel Fusarium species. These pseudoflowers mimic Xyris flowers in gross morphology and are ultraviolet reflective. Axenic cultures of F. xyrophilum produced two pigments that had fluorescence emission maxima in light ranges that trichromatic insects are sensitive to and volatiles known to attract insect pollinators. One of the volatiles emitted by F. xyrophilum cultures (i.e., 2-ethylhexanol) was also detected in the head space of X. laxifolia var. iridifolia flowers, a perennial species native to the New World. Results of microscopic and PCR analyses, combined with examination of gross morphology of the pseudoflowers, provide evidence that the fungus had established a systemic infection in both Xyris species, sterilized them and formed fungal pseudoflowers containing both mating type idiomorphs. Fusarium xyrophilum cultures also produced the auxin indole-3-acetic acid (IAA) and the cytokinin isopentenyl adenosine (iPR). Field observations revealed that pseudoflowers and Xyris flowers were both visited by bees. Together, the results suggest that F. xyrophilum pseudoflowers are a novel floral mimicry system that attracts insect pollinators, via visual and olfactory cues, into vectoring its conidia, which might facilitate outcrossing of this putatively heterothallic fungus and infection of previously uninfected plants.


Assuntos
Mimetismo Biológico , Flores/anatomia & histologia , Fusarium/crescimento & desenvolvimento , Poaceae/anatomia & histologia , Flores/crescimento & desenvolvimento , Fusarium/genética , Guiana , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Poaceae/genética , Polinização/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
9.
PLoS Pathog ; 14(4): e1006946, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29649280

RESUMO

Trichothecenes are a family of terpenoid toxins produced by multiple genera of fungi, including plant and insect pathogens. Some trichothecenes produced by the fungus Fusarium are among the mycotoxins of greatest concern to food and feed safety because of their toxicity and frequent occurrence in cereal crops, and trichothecene production contributes to pathogenesis of some Fusarium species on plants. Collectively, fungi produce over 150 trichothecene analogs: i.e., molecules that share the same core structure but differ in patterns of substituents attached to the core structure. Here, we carried out genomic, phylogenetic, gene-function, and analytical chemistry studies of strains from nine fungal genera to identify genetic variation responsible for trichothecene structural diversity and to gain insight into evolutionary processes that have contributed to the variation. The results indicate that structural diversity has resulted from gain, loss, and functional changes of trichothecene biosynthetic (TRI) genes. The results also indicate that the presence of some substituents has arisen independently in different fungi by gain of different genes with the same function. Variation in TRI gene duplication and number of TRI loci was also observed among the fungi examined, but there was no evidence that such genetic differences have contributed to trichothecene structural variation. We also inferred ancestral states of the TRI cluster and trichothecene biosynthetic pathway, and proposed scenarios for changes in trichothecene structures during divergence of TRI cluster homologs. Together, our findings provide insight into evolutionary processes responsible for structural diversification of toxins produced by pathogenic fungi.


Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Micotoxinas/química , Filogenia , Trichoderma/genética , Tricotecenos/química , DNA Fúngico , Genômica , Micotoxinas/farmacologia , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento , Tricotecenos/farmacologia
10.
Phytopathology ; 110(4): 916-926, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32125942

RESUMO

Fusarium graminearum is a causal agent of Fusarium head blight (FHB), a disease that reduces yield and quality of cereal crops and contaminates grain with mycotoxins that pose health risks to humans and livestock. Interpopulation antagonistic interactions between isolates that produce different trichothecene mycotoxins can reduce FHB in wheat, but it is not known if interactions between isolates with a shared population identity that produce the same trichothecenes have a similar effect. Using isolates from the predominant F. graminearum populations in North America (NA1 and NA2), we examined intrapopulation interactions by comparing growth, disease progression, and toxin production of individual isolates with multi-isolate mixes. In vitro, mycelial growth was significantly greater when most NA1 and NA2 isolates were cultured individually versus when cultured as a mixture of isolates from the same population. In susceptible wheat Norm, FHB generally progressed faster in heads inoculated with an individual isolate versus a multi-isolate mixture, but the antagonistic effect of intrapopulation interactions was more pronounced for NA1 than NA2 isolates. By contrast, in moderately resistant wheat Alsen, mixtures of isolates from either population caused obvious reductions in FHB development. Mycotoxin contamination was not consistently affected by intrapopulation interactions and varied depending on the interacting isolates from either population. Our results indicate that antagonistic intrapopulation interactions can influence FHB in controlled environmental conditions. Understanding if the regional composition of pathogen populations similarly influences FHB in the field could improve disease forecasting and management practices.


Assuntos
Fusarium , Micotoxinas , América do Norte , Doenças das Plantas , Triticum
11.
Mol Plant Microbe Interact ; 32(4): 379-391, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30256178

RESUMO

Rising atmospheric CO2 concentrations and associated climate changes are thought to have contributed to the steady increase of Fusarium head blight (FHB) on wheat. However, our understanding of precisely how elevated CO2 influences the defense response of wheat against Fusarium graminearum remains limited. In this study, we evaluated the metabolic profiles of susceptible (Norm) and moderately resistant (Alsen) spring wheat in response to whole-head inoculation with two deoxynivalenol (DON)-producing F. graminearum isolates (DON+), isolates 9F1 and Gz3639, and a DON-deficient (DON-) isolate (Gzt40) at ambient (400 ppm) and elevated (800 ppm) CO2 concentrations. The effects of elevated CO2 were dependent on both the Fusarium strain and the wheat variety, but metabolic differences in the host can explain the observed changes in F. graminearum biomass and DON accumulation. The complexity of abiotic and biotic stress interactions makes it difficult to determine if the observed metabolic changes in wheat are a result of CO2-induced changes in the host, the pathogen, or a combination of both. However, the effects of elevated CO2 were not dependent on DON production. Finally, we identified several metabolic biomarkers for wheat that can reliably predict FHB resistance or susceptibility, even as atmospheric CO2 levels rise.


Assuntos
Dióxido de Carbono , Resistência à Doença , Fusarium , Interações Hospedeiro-Patógeno , Triticum , Dióxido de Carbono/farmacologia , Resistência à Doença/efeitos dos fármacos , Fusarium/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Triticum/microbiologia
12.
Mol Plant Microbe Interact ; 32(7): 888-898, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30759350

RESUMO

Fusarium head blight (FHB) of wheat and barley caused by the fungus Fusarium graminearum reduces crop yield and contaminates grain with mycotoxins. In this study, we investigated two exo-1,5-α-L-arabinanases (Arb93A and Arb93B) secreted by F. graminearum and their effect on wheat head blight development. Arabinan is an important component of plant cell walls but it was not known whether these arabinanases play a role in FHB. Both ARB93A and ARB93B were induced during the early stages of infection. arb93A mutants did not exhibit a detectable change in ability to cause FHB, whereas arb93B mutants caused lower levels of FHB symptoms and deoxynivalenol contamination compared with the wild type. Furthermore, virulence and deoxynivalenol contamination were restored to wild-type levels in ARB93B complemented mutants. Fusion proteins of green fluorescent protein (GFP) with the predicted chloroplast peptide or the mature protein of Arb93B were not observed in the chloroplast. Reactive oxygen species (ROS) production was reduced in the infiltrated zones of Nicotiana benthamiana leaves expressing ARB93B-GFP. Coexpression of ARB93B-GFP and Bax in N. benthamiana leaves significantly suppressed Bax-programmed cell death. Our results indicate that Arb93B enhances plant disease susceptibility by suppressing ROS-associated plant defense responses.


Assuntos
Fusarium , Glicosídeo Hidrolases , Micotoxinas , Imunidade Vegetal , Triticum , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/enzimologia , Fusarium/genética , Fusarium/metabolismo , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Triticum/imunologia , Triticum/microbiologia
13.
Planta ; 249(1): 21-30, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30187155

RESUMO

MAIN CONCLUSION: Maize produces an array of herbivore-induced terpene volatiles that attract parasitoids to infested plants and a suite of pathogen-induced non-volatile terpenoids with antimicrobial activity to defend against pests. Plants rely on complex blends of constitutive and dynamically produced specialized metabolites to mediate beneficial ecological interactions and protect against biotic attack. One such class of metabolites are terpenoids, a large and structurally diverse class of molecules shown to play significant defensive and developmental roles in numerous plant species. Despite this, terpenoids have only recently been recognized as significant contributors to pest resistance in maize (Zea mays), a globally important agricultural crop. The current review details recent advances in our understanding of biochemical structures, pathways and functional roles of maize terpenoids. Dependent upon the lines examined, maize can harbor more than 30 terpene synthases, underlying the inherent diversity of maize terpene defense systems. Part of this defensive arsenal is the inducible production of volatile bouquets that include monoterpenes, homoterpenes and sesquiterpenes, which often function in indirect defense by enabling the attraction of parasitoids and predators. More recently discovered are a subset of sesquiterpene and diterpene hydrocarbon olefins modified by cytochrome P450s to produce non-volatile end-products such kauralexins, zealexins, dolabralexins and ß-costic acid. These non-volatile terpenoid phytoalexins often provide effective defense against both microbial and insect pests via direct antimicrobial and anti-feedant activity. The diversity and promiscuity of maize terpene synthases, coupled with a variety of secondary modifications, results in elaborate defensive layers whose identities, regulation and precise functions are continuing to be elucidated.


Assuntos
Terpenos/metabolismo , Zea mays/metabolismo , Zea mays/parasitologia , Animais , Regulação da Expressão Gênica de Plantas , Insetos/patogenicidade , Doenças das Plantas/parasitologia , Sesquiterpenos/metabolismo , Fitoalexinas
14.
Proc Natl Acad Sci U S A ; 113(21): 5946-51, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27162341

RESUMO

Multifunctional ß-catenin, with critical roles in both cell-cell adhesion and Wnt-signaling pathways, was among HeLa cell proteins coimmunoprecipitated by antibodies against brefeldin A-inhibited guanine nucleotide-exchange factors 1 and 2 (BIG1 or BIG2) that activate ADP-ribosylation factors (Arfs) by accelerating the replacement of bound GDP with GTP. BIG proteins also contain A-kinase anchoring protein (AKAP) sequences that can act as scaffolds for multimolecular assemblies that facilitate and limit cAMP signaling temporally and spatially. Direct interaction of BIG1 N-terminal sequence with ß-catenin was confirmed using yeast two-hybrid assays and in vitro synthesized proteins. Depletion of BIG1 and/or BIG2 or overexpression of guanine nucleotide-exchange factor inactive mutant, but not wild-type, proteins interfered with ß-catenin trafficking, leading to accumulation at perinuclear Golgi structures. Both phospholipase D activity and vesicular trafficking were required for effects of BIG1 and BIG2 on ß-catenin activation. Levels of PKA-phosphorylated ß-catenin S675 and ß-catenin association with PKA, BIG1, and BIG2 were also diminished after BIG1/BIG2 depletion. Inferring a requirement for BIG1 and/or BIG2 AKAP sequence in PKA modification of ß-catenin and its effect on transcription activation, we confirmed dependence of S675 phosphorylation and transcription coactivator function on BIG2 AKAP-C sequence.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistemas do Segundo Mensageiro/fisiologia , beta Catenina/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Fatores de Ribosilação do ADP/genética , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Guanosina Difosfato/genética , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/genética , Guanosina Trifosfato/metabolismo , Células HeLa , Humanos , Fosfolipase D/genética , Fosfolipase D/metabolismo , Fosforilação/fisiologia , Domínios Proteicos , beta Catenina/genética
15.
Planta ; 247(4): 863-873, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29260396

RESUMO

MAIN CONCLUSION: Chemical isolation and NMR-based structure elucidation revealed a novel keto-acidic sesquiterpenoid, termed zealexin A4 (ZA4). ZA4 is elicited by pathogens and herbivory, but attenuated by heightened levels of CO 2 . The identification of the labdane-related diterpenoids, termed kauralexins and acidic sesquiterpenoids, termed zealexins, demonstrated the existence of at least ten novel stress-inducible maize metabolites with diverse antimicrobial activity. Despite these advances, the identity of co-occurring and predictably related analytes remains largely unexplored. In the current effort, we identify and characterize the first sesquiterpene keto acid derivative of ß-macrocarpene, named zealexin A4 (ZA4). Evaluation of diverse maize inbreds revealed that ZA4 is commonly produced in maize scutella during the first 14 days of seedling development; however, ZA4 production in the scutella was markedly reduced in seedlings grown in sterile soil. Elevated ZA4 production was observed in response to inoculation with adventitious fungal pathogens, such as Aspergillus flavus and Rhizopus microsporus, and a positive relationship between ZA4 production and expression of the predicted zealexin biosynthetic genes, terpene synthases 6 and 11 (Tps6 and Tps11), was observed. ZA4 exhibited significant antimicrobial activity against the mycotoxigenic pathogen A. flavus; however, ZA4 activity against R. microsporus was minimal, suggesting the potential of some fungi to detoxify ZA4. Significant induction of ZA4 production was also observed in response to infestation with the stem tunneling herbivore Ostrinia nubilalis. Examination of the interactive effects of elevated CO2 (E-CO2) on both fungal and herbivore-elicited ZA4 production revealed significantly reduced levels of inducible ZA4 accumulation, consistent with a negative role for E-CO2 on ZA4 production. Collectively, these results describe a novel ß-macrocarpene-derived antifungal defense in maize and expand the established diversity of zealexins that are differentially regulated in response to biotic/abiotic stress.


Assuntos
Sesquiterpenos/metabolismo , Zea mays/metabolismo , Alquil e Aril Transferases/metabolismo , Anti-Infecciosos/metabolismo , Aspergillus flavus/metabolismo , Dióxido de Carbono/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Imunidade Vegetal , Rhizopus/metabolismo , Plântula/metabolismo , Zea mays/efeitos dos fármacos , Zea mays/microbiologia
16.
J Exp Bot ; 69(7): 1693-1705, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361044

RESUMO

Plant defense research is facilitated by the use of genome-sequenced inbred lines; however, a foundational knowledge of interactions in commercial hybrids remains relevant to understanding mechanisms present in crops. Using an array of commercial maize hybrids, we quantified the accumulation patterns of defense-related metabolites and phytohormones in tissues challenged with diverse fungal pathogens. Across hybrids, Southern leaf blight (Cochliobolus heterostrophus) strongly elicited specific sesqui- and diterpenoid defenses, namely zealexin A4 (ZA4) and kauralexin diacids, compared with the stalk-rotting agents Fusarium graminearum and Colletotrichum graminicola. With respect to biological activity, ZA4 and kauralexin diacids demonstrated potent antimicrobial action against F. graminearum. Unexpectedly, ZA4 displayed an opposite effect on C. graminicola by promoting growth. Overall, a negative correlation was observed between total analyzed terpenoids and fungal growth. Statistical analyses highlighted kauralexin A3 and abscisic acid as metabolites most associated with fungal suppression. As an empirical test, mutants of the ent-copalyl diphosphate synthase Anther ear 2 (An2) lacking kauralexin biosynthetic capacity displayed increased susceptibility to C. heterostrophus and Fusarium verticillioides. Our results highlight a widely occurring defensive function of acidic terpenoids in commercial hybrids and the complex nature of elicited pathway products that display selective activities on fungal pathogen species.


Assuntos
Antibiose , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Terpenos/metabolismo , Zea mays/fisiologia , Ascomicetos/fisiologia , Colletotrichum/fisiologia , Fusarium/fisiologia , Genótipo , Hibridização Genética , Mutação , Melhoramento Vegetal , Zea mays/genética , Zea mays/microbiologia
17.
Plant Cell Environ ; 40(9): 1725-1734, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28436049

RESUMO

Terpene volatiles produced by sweet corn (Zea mays) upon infestation with pests such as beet armyworm (Spodoptera exigua) function as part of an indirect defence mechanism by attracting parasitoid wasps; yet little is known about the impact of climate change on this form of plant defence. To investigate how a central component of climate change affects indirect defence, we measured herbivore-induced volatile emissions in plants grown under elevated carbon dioxide (CO2 ). We found that S. exigua infested or elicitor-treated Z. mays grown at elevated CO2 had decreased emission of its major sesquiterpene, (E)-ß-caryophyllene and two homoterpenes, (3E)-4,8-dimethyl-1,3,7-nonatriene and (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene. In contrast, inside the leaves, elicitor-induced (E)-ß-caryophyllene hyper-accumulated at elevated CO2 , while levels of homoterpenes were unaffected. Furthermore, gene expression analysis revealed that the induction of terpene synthase genes following treatment was lower in plants grown at elevated CO2 . Our data indicate that elevated CO2 leads both to a repression of volatile synthesis at the transcriptional level and to limitation of volatile release through effects of CO2 on stomatal conductance. These findings suggest that elevated CO2 may alter the ability of Z. mays to utilize volatile terpenes to mediate indirect defenses.


Assuntos
Dióxido de Carbono/farmacologia , Herbivoria/fisiologia , Compostos Orgânicos Voláteis/análise , Zea mays/fisiologia , Alquil e Aril Transferases/genética , Animais , Ciclopentanos/metabolismo , Dieta , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Larva/crescimento & desenvolvimento , Oxilipinas/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Ácido Salicílico/metabolismo , Sesquiterpenos/análise , Spodoptera/crescimento & desenvolvimento , Compostos Orgânicos Voláteis/química , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/crescimento & desenvolvimento
18.
Plant Dis ; 101(1): 150-157, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30682303

RESUMO

Soybean sudden death syndrome (SDS) was detected in South Africa for the first time during pathogen surveys conducted in 2013 to 2014. The primary objective of this study was to characterize the 16 slow-growing Fusarium strains that were isolated from the roots of symptomatic plants. Molecular phylogenetic analyses of a portion of translation elongation factor 1-α (TEF1) and the nuclear ribosomal intergenic spacer region (IGS rDNA) indicated that the etiological agents were Fusarium brasiliense and a novel, undescribed Fusarium sp. This is the first report of F. brasiliense outside of Brazil and Argentina and the novel Fusarium sp. causing soybean SDS. Koch's postulates were completed for both fusaria on seven soybean cultivars that are commercially available in South Africa. Results of the pathogenicity experiment revealed that the strains of F. brasiliense and Fusarium sp. differed in aggressiveness to soybean, as reflected in differences in foliar symptoms, root rot, and reduction in shoot length. Cell-free culture filtrates of the two soybean SDS pathogens from South Africa and two positive control strains of F. virguliforme from the United States induced typical SDS symptoms on susceptible soybean cultivars in a whole-seedling assay, indicating that they contained phytotoxins.

19.
Plant Cell ; 25(3): 1108-25, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23512856

RESUMO

Secondary metabolites are major constituents of plant defense against herbivore attack. Relatively little is known about the cell type-specific formation and antiherbivore activities of secondary compounds in roots despite the substantial impact of root herbivory on plant performance and fitness. Here, we describe the constitutive formation of semivolatile diterpenes called rhizathalenes by the class I terpene synthase (TPS) 08 in roots of Arabidopsis thaliana. The primary enzymatic product of TPS08, rhizathalene A, which is produced from the substrate all-trans geranylgeranyl diphosphate, represents a so far unidentified class of tricyclic diterpene carbon skeletons with an unusual tricyclic spiro-hydrindane structure. Protein targeting and administration of stable isotope precursors indicate that rhizathalenes are biosynthesized in root leucoplasts. TPS08 expression is largely localized to the root stele, suggesting a centric and gradual release of its diterpene products into the peripheral root cell layers. We demonstrate that roots of Arabidopsis tps08 mutant plants, grown aeroponically and in potting substrate, are more susceptible to herbivory by the opportunistic root herbivore fungus gnat (Bradysia spp) and suffer substantial removal of peripheral tissue at larval feeding sites. Our work provides evidence for the in vivo role of semivolatile diterpene metabolites as local antifeedants in belowground direct defense against root-feeding insects.


Assuntos
Alquil e Aril Transferases/química , Arabidopsis/enzimologia , Diterpenos/química , Herbivoria/fisiologia , Raízes de Plantas/enzimologia , Compostos de Espiro/química , Animais , Arabidopsis/química , Arabidopsis/efeitos dos fármacos , Arabidopsis/fisiologia , Cultura Axênica , Ciclopentanos/farmacologia , Dípteros/fisiologia , Diterpenos/imunologia , Diterpenos/isolamento & purificação , Larva/fisiologia , Estrutura Molecular , Oxilipinas/farmacologia , Células Vegetais/química , Células Vegetais/enzimologia , Imunidade Vegetal , Raízes de Plantas/química , Plastídeos/química , Fosfatos de Poli-Isoprenil/química , Compostos de Espiro/imunologia , Compostos de Espiro/isolamento & purificação , Compostos Orgânicos Voláteis/química
20.
Proc Natl Acad Sci U S A ; 110(34): E3162-70, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23918382

RESUMO

Brefeldin A-inhibited guanine nucleotide-exchange factors BIG1 and BIG2 activate, through their Sec7 domains, ADP ribosylation factors (Arfs) by accelerating the replacement of Arf-bound GDP with GTP for initiation of vesicular transport or activation of specific enzymes that modify important phospholipids. They are also implicated in regulation of cell polarization and actin dynamics for directed migration. Reciprocal coimmunoprecipitation of endogenous HeLa cell BIG1 and BIG2 with myosin IIA was demonstrably independent of Arf guanine nucleotide-exchange factor activity, because effects of BIG1 and BIG2 depletion were reversed by overexpression of the cognate BIG molecule C-terminal sequence that follows the Arf activation site. Selective depletion of BIG1 or BIG2 enhanced specific phosphorylation of myosin regulatory light chain (T18/S19) and F-actin content, which impaired cell migration in Transwell assays. Our data are clear evidence of these newly recognized functions for BIG1 and BIG2 in transduction or integration of mechanical signals from integrin adhesions and myosin IIA-dependent actin dynamics. Thus, by anchoring or scaffolding the assembly, organization, and efficient operation of multimolecular myosin phosphatase complexes that include myosin IIA, protein phosphatase 1δ, and myosin phosphatase-targeting subunit 1, BIG1 and BIG2 serve to integrate diverse biophysical and biochemical events in cells.


Assuntos
Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Miosina não Muscular Tipo IIA/metabolismo , Análise de Variância , Western Blotting , Imunofluorescência , Células HeLa , Humanos , Imunoprecipitação , Fosforilação , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA