Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell ; 180(3): 536-551.e17, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31955849

RESUMO

Goal-directed behavior requires the interaction of multiple brain regions. How these regions and their interactions with brain-wide activity drive action selection is less understood. We have investigated this question by combining whole-brain volumetric calcium imaging using light-field microscopy and an operant-conditioning task in larval zebrafish. We find global, recurring dynamics of brain states to exhibit pre-motor bifurcations toward mutually exclusive decision outcomes. These dynamics arise from a distributed network displaying trial-by-trial functional connectivity changes, especially between cerebellum and habenula, which correlate with decision outcome. Within this network the cerebellum shows particularly strong and predictive pre-motor activity (>10 s before movement initiation), mainly within the granule cells. Turn directions are determined by the difference neuroactivity between the ipsilateral and contralateral hemispheres, while the rate of bi-hemispheric population ramping quantitatively predicts decision time on the trial-by-trial level. Our results highlight a cognitive role of the cerebellum and its importance in motor planning.


Assuntos
Cerebelo/fisiologia , Tomada de Decisões/fisiologia , Tempo de Reação/fisiologia , Peixe-Zebra/fisiologia , Animais , Comportamento Animal/fisiologia , Mapeamento Encefálico/métodos , Cérebro/fisiologia , Cognição/fisiologia , Condicionamento Operante/fisiologia , Objetivos , Habenula/fisiologia , Temperatura Alta , Larva/fisiologia , Atividade Motora/fisiologia , Movimento , Neurônios/fisiologia , Desempenho Psicomotor/fisiologia , Rombencéfalo/fisiologia
2.
Cell ; 177(4): 1050-1066.e14, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30982596

RESUMO

Calcium imaging using two-photon scanning microscopy has become an essential tool in neuroscience. However, in its typical implementation, the tradeoffs between fields of view, acquisition speeds, and depth restrictions in scattering brain tissue pose severe limitations. Here, using an integrated systems-wide optimization approach combined with multiple technical innovations, we introduce a new design paradigm for optical microscopy based on maximizing biological information while maintaining the fidelity of obtained neuron signals. Our modular design utilizes hybrid multi-photon acquisition and allows volumetric recording of neuroactivity at single-cell resolution within up to 1 × 1 × 1.22 mm volumes at up to 17 Hz in awake behaving mice. We establish the capabilities and potential of the different configurations of our imaging system at depth and across brain regions by applying it to in vivo recording of up to 12,000 neurons in mouse auditory cortex, posterior parietal cortex, and hippocampus.


Assuntos
Microscopia/métodos , Imagem Molecular/métodos , Neuroimagem/métodos , Animais , Encéfalo/fisiologia , Cálcio/metabolismo , Feminino , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Análise de Célula Única/métodos
3.
Cell ; 167(2): 539-552.e14, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27716509

RESUMO

Microtubule-organizing centers (MTOCs) nucleate microtubules that can grow autonomously in any direction. To generate bundles of parallel microtubules originating from a single MTOC, the growth of multiple microtubules needs to coordinated, but the underlying mechanism is unknown. Here, we show that a conserved two-component system consisting of the plus-end tracker EB1 and the minus-end-directed molecular motor Kinesin-14 is sufficient to promote parallel microtubule growth. The underlying mechanism relies on the ability of Kinesin-14 to guide growing plus ends along existing microtubules. The generality of this finding is supported by yeast, Drosophila, and human EB1/Kinesin-14 pairs. We demonstrate that plus-end guiding involves a directional switch of the motor due to a force applied via a growing microtubule end. The described mechanism can account for the generation of parallel microtubule networks required for a broad range of cellular functions such as spindle assembly or cell polarization.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Helicases/metabolismo , Cinesinas/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Proteínas Oncogênicas/metabolismo , RNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Drosophila melanogaster , Humanos , Fenômenos Mecânicos
4.
Nature ; 629(8014): 1109-1117, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750359

RESUMO

Working memory, the process through which information is transiently maintained and manipulated over a brief period, is essential for most cognitive functions1-4. However, the mechanisms underlying the generation and evolution of working-memory neuronal representations at the population level over long timescales remain unclear. Here, to identify these mechanisms, we trained head-fixed mice to perform an olfactory delayed-association task in which the mice made decisions depending on the sequential identity of two odours separated by a 5 s delay. Optogenetic inhibition of secondary motor neurons during the late-delay and choice epochs strongly impaired the task performance of the mice. Mesoscopic calcium imaging of large neuronal populations of the secondary motor cortex (M2), retrosplenial cortex (RSA) and primary motor cortex (M1) showed that many late-delay-epoch-selective neurons emerged in M2 as the mice learned the task. Working-memory late-delay decoding accuracy substantially improved in the M2, but not in the M1 or RSA, as the mice became experts. During the early expert phase, working-memory representations during the late-delay epoch drifted across days, while the stimulus and choice representations stabilized. In contrast to single-plane layer 2/3 (L2/3) imaging, simultaneous volumetric calcium imaging of up to 73,307 M2 neurons, which included superficial L5 neurons, also revealed stabilization of late-delay working-memory representations with continued practice. Thus, delay- and choice-related activities that are essential for working-memory performance drift during learning and stabilize only after several days of expert performance.


Assuntos
Consolidação da Memória , Memória de Curto Prazo , Prática Psicológica , Animais , Feminino , Masculino , Camundongos , Cálcio/metabolismo , Comportamento de Escolha/fisiologia , Consolidação da Memória/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos Endogâmicos C57BL , Córtex Motor/fisiologia , Córtex Motor/citologia , Neurônios Motores/fisiologia , Odorantes/análise , Optogenética , Desempenho Psicomotor/fisiologia , Olfato/fisiologia , Fatores de Tempo
5.
Nat Methods ; 21(1): 132-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129618

RESUMO

Multiphoton microscopy can resolve fluorescent structures and dynamics deep in scattering tissue and has transformed neural imaging, but applying this technique in vivo can be limited by the mechanical and optical constraints of conventional objectives. Short working distance objectives can collide with compact surgical windows or other instrumentation and preclude imaging. Here we present an ultra-long working distance (20 mm) air objective called the Cousa objective. It is optimized for performance across multiphoton imaging wavelengths, offers a more than 4 mm2 field of view with submicrometer lateral resolution and is compatible with commonly used multiphoton imaging systems. A novel mechanical design, wider than typical microscope objectives, enabled this combination of specifications. We share the full optical prescription, and report performance including in vivo two-photon and three-photon imaging in an array of species and preparations, including nonhuman primates. The Cousa objective can enable a range of experiments in neuroscience and beyond.


Assuntos
Corantes , Microscopia de Fluorescência por Excitação Multifotônica , Animais , Microscopia de Fluorescência por Excitação Multifotônica/métodos
6.
Annu Rev Neurosci ; 41: 431-452, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709208

RESUMO

The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+ imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.


Assuntos
Encéfalo , Vias Neurais/fisiologia , Neurônios/fisiologia , Imagem Óptica/métodos , Imagem Óptica/normas , Animais , Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Vias Neurais/diagnóstico por imagem
7.
Nat Methods ; 20(4): 600-609, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823333

RESUMO

Various implementations of mesoscopes provide optical access for calcium imaging across multi-millimeter fields of view in the mammalian brain; however, capturing the activity of the neuronal population within such fields of view near-simultaneously and in a volumetric fashion has remained challenging as approaches for imaging scattering brain tissues typically are based on sequential acquisition. Here we present a modular, mesoscale light-field (MesoLF) imaging hardware and software solution that allows recording from thousands of neurons within volumes of ⌀ 4 × 0.2 mm, located at up to 350 µm depth in the mouse cortex, at 18 volumes per second and an effective voxel rate of ~40 megavoxels per second. Using our optical design and computational approach we show recording of ~10,000 neurons across multiple cortical areas in mice using workstation-grade computing resources.


Assuntos
Encéfalo , Neurônios , Camundongos , Animais , Neurônios/fisiologia , Encéfalo/fisiologia , Software , Neuroimagem , Mamíferos
8.
Proc Natl Acad Sci U S A ; 119(43): e2211688119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252036

RESUMO

The nucleus accumbens (NAc) is a canonical reward center that regulates feeding and drinking but it is not known whether these behaviors are mediated by same or different neurons. We employed two-photon calcium imaging in awake, behaving mice and found that during the appetitive phase, both hunger and thirst are sensed by a nearly identical population of individual D1 and D2 neurons in the NAc that respond monophasically to food cues in fasted animals and water cues in dehydrated animals. During the consummatory phase, we identified three distinct neuronal clusters that are temporally correlated with action initiation, consumption, and cessation shared by feeding and drinking. These dynamic clusters also show a nearly complete overlap of individual D1 neurons and extensive overlap among D2 neurons. Modulating D1 and D2 neural activities revealed analogous effects on feeding versus drinking behaviors. In aggregate, these data show that a highly overlapping set of D1 and D2 neurons in NAc detect food and water reward and elicit concordant responses to hunger and thirst. These studies establish a general role of this mesolimbic pathway in mediating instinctive behaviors by controlling motivation-associated variables rather than conferring behavioral specificity.


Assuntos
Fome , Sede , Animais , Cálcio/metabolismo , Camundongos , Núcleo Accumbens/fisiologia , Recompensa , Água/metabolismo
9.
Nat Methods ; 18(9): 1103-1111, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34462592

RESUMO

Two-photon microscopy has enabled high-resolution imaging of neuroactivity at depth within scattering brain tissue. However, its various realizations have not overcome the tradeoffs between speed and spatiotemporal sampling that would be necessary to enable mesoscale volumetric recording of neuroactivity at cellular resolution and speed compatible with resolving calcium transients. Here, we introduce light beads microscopy (LBM), a scalable and spatiotemporally optimal acquisition approach limited only by fluorescence lifetime, where a set of axially separated and temporally distinct foci record the entire axial imaging range near-simultaneously, enabling volumetric recording at 1.41 × 108 voxels per second. Using LBM, we demonstrate mesoscopic and volumetric imaging at multiple scales in the mouse cortex, including cellular-resolution recordings within ~3 × 5 × 0.5 mm volumes containing >200,000 neurons at ~5 Hz and recordings of populations of ~1 million neurons within ~5.4 × 6 × 0.5 mm volumes at ~2 Hz, as well as higher speed (9.6 Hz) subcellular-resolution volumetric recordings. LBM provides an opportunity for discovering the neurocomputations underlying cortex-wide encoding and processing of information in the mammalian brain.


Assuntos
Córtex Cerebral/citologia , Microscopia/métodos , Animais , Cálcio/análise , Feminino , Lasers , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microesferas , Neurônios/citologia
10.
Eur J Neurosci ; 54(4): 5357-5367, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160864

RESUMO

For millennia, people have used "averted vision" to improve their detection of faint celestial objects, a technique first documented around 325 BCE. Yet, no studies have assessed gaze location during averted vision to determine what pattern best facilitates perception. Here, we characterized averted vision while recording eye-positions of dark-adapted human participants, for the first time. We simulated stars of apparent magnitudes 3.3 and 3.5, matching their brightness to Megrez (the dimmest star in the Big Dipper) and Tau Ceti. Participants indicated whether each star was visible from a series of fixation locations, providing a comprehensive map of detection performance in all directions. Contrary to prior predictions, maximum detection was first achieved at ~8° from the star, much closer to the fovea than expected from rod-cone distributions alone. These findings challenge the assumption of optimal detection at the rod density peak and provide the first systematic assessment of an age-old facet of human vision.


Assuntos
Visão Ocular , Humanos
11.
Nat Methods ; 15(6): 469, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29786093

RESUMO

In the version of this Brief Communication originally published online, ref. 21 included details for a conference paper (Pegard, N. C. et al. Paper presented at Novel Techniques in Microscopy: Optics in the Life Sciences, Vancouver, BC, Canada, 12-15 April 2015). The correct reference is the following: Pégard, N. C. et al. Optica 3, 517-524 (2016). This error has been corrected in the print, HTML and PDF versions of the paper.

12.
Nat Methods ; 15(6): 429-432, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29736000

RESUMO

Thus far, optical recording of neuronal activity in freely behaving animals has been limited to a thin axial range. We present a head-mounted miniaturized light-field microscope (MiniLFM) capable of capturing neuronal network activity within a volume of 700 × 600 × 360 µm3 at 16 Hz in the hippocampus of freely moving mice. We demonstrate that neurons separated by as little as ~15 µm and at depths up to 360 µm can be discriminated.


Assuntos
Hipocampo/citologia , Hipocampo/fisiologia , Miniaturização/instrumentação , Neurônios/fisiologia , Animais , Microscopia Intravital/instrumentação , Microscopia Intravital/métodos , Camundongos , Imagem Óptica/instrumentação , Imagem Óptica/métodos
13.
EMBO J ; 35(24): 2671-2685, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27799150

RESUMO

The spatial organization, correct expression, repair, and segregation of eukaryotic genomes depend on cohesin, ring-shaped protein complexes that are thought to function by entrapping DNA It has been proposed that cohesin is recruited to specific genomic locations from distal loading sites by an unknown mechanism, which depends on transcription, and it has been speculated that cohesin movements along DNA could create three-dimensional genomic organization by loop extrusion. However, whether cohesin can translocate along DNA is unknown. Here, we used single-molecule imaging to show that cohesin can diffuse rapidly on DNA in a manner consistent with topological entrapment and can pass over some DNA-bound proteins and nucleosomes but is constrained in its movement by transcription and DNA-bound CCCTC-binding factor (CTCF). These results indicate that cohesin can be positioned in the genome by moving along DNA, that transcription can provide directionality to these movements, that CTCF functions as a boundary element for moving cohesin, and they are consistent with the hypothesis that cohesin spatially organizes the genome via loop extrusion.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA/metabolismo , Transcrição Gênica , Fator de Ligação a CCCTC , Humanos , Proteínas Repressoras/metabolismo , Imagem Individual de Molécula , Fatores de Tempo , Coesinas
14.
Nat Methods ; 14(8): 811-818, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28650477

RESUMO

Light-field microscopy (LFM) is a scalable approach for volumetric Ca2+ imaging with high volumetric acquisition rates (up to 100 Hz). Although the technology has enabled whole-brain Ca2+ imaging in semi-transparent specimens, tissue scattering has limited its application in the rodent brain. We introduce seeded iterative demixing (SID), a computational source-extraction technique that extends LFM to the mammalian cortex. SID can capture neuronal dynamics in vivo within a volume of 900 × 900 × 260 µm located as deep as 380 µm in the mouse cortex or hippocampus at a 30-Hz volume rate while discriminating signals from neurons as close as 20 µm apart, at a computational cost three orders of magnitude less than that of frame-by-frame image reconstruction. We expect that the simplicity and scalability of LFM, coupled with the performance of SID, will open up a range of applications including closed-loop experiments.


Assuntos
Mapeamento Encefálico/métodos , Sinalização do Cálcio/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Vídeo/métodos , Imagem Molecular/métodos , Neurônios/fisiologia , Algoritmos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Nimodipina , Peixe-Zebra
16.
Nat Methods ; 13(12): 1021-1028, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27798612

RESUMO

Although whole-organism calcium imaging in small and semi-transparent animals has been demonstrated, capturing the functional dynamics of large-scale neuronal circuits in awake behaving mammals at high speed and resolution has remained one of the main frontiers in systems neuroscience. Here we present a method based on light sculpting that enables unbiased single- and dual-plane high-speed (up to 160 Hz) calcium imaging as well as in vivo volumetric calcium imaging of a mouse cortical column (0.5 mm × 0.5 mm × 0.5 mm) at single-cell resolution and fast volume rates (3-6 Hz). We achieved this by tailoring the point-spread function of our microscope to the structures of interest while maximizing the signal-to-noise ratio using a home-built fiber laser amplifier with pulses that are synchronized to the imaging voxel speed. This enabled in vivo recording of calcium dynamics of several thousand neurons across cortical layers and in the hippocampus of awake behaving mice.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Córtex Cerebral/metabolismo , Hipocampo/metabolismo , Imagem Molecular/métodos , Neurônios/metabolismo , Animais , Comportamento Animal/fisiologia , Camundongos , Microscopia Confocal , Fótons , Fatores de Tempo
17.
Nature ; 501(7468): 564-8, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23975099

RESUMO

Mammalian genomes contain several billion base pairs of DNA that are packaged in chromatin fibres. At selected gene loci, cohesin complexes have been proposed to arrange these fibres into higher-order structures, but how important this function is for determining overall chromosome architecture and how the process is regulated are not well understood. Using conditional mutagenesis in the mouse, here we show that depletion of the cohesin-associated protein Wapl stably locks cohesin on DNA, leads to clustering of cohesin in axial structures, and causes chromatin condensation in interphase chromosomes. These findings reveal that the stability of cohesin-DNA interactions is an important determinant of chromatin structure, and indicate that cohesin has an architectural role in interphase chromosome territories. Furthermore, we show that regulation of cohesin-DNA interactions by Wapl is important for embryonic development, expression of genes such as c-myc (also known as Myc), and cell cycle progression. In mitosis, Wapl-mediated release of cohesin from DNA is essential for proper chromosome segregation and protects cohesin from cleavage by the protease separase, thus enabling mitotic exit in the presence of functional cohesin complexes.


Assuntos
Cromatina/química , Cromatina/metabolismo , Segregação de Cromossomos , Proteínas/metabolismo , Animais , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Cromátides/metabolismo , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/genética , Cromossomos de Mamíferos/química , Cromossomos de Mamíferos/genética , Cromossomos de Mamíferos/metabolismo , DNA/genética , DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desenvolvimento Embrionário/genética , Endopeptidases/metabolismo , Regulação da Expressão Gênica/genética , Genes myc/genética , Interfase , Camundongos , Mitose , Prófase , Proteínas/genética , Separase , Coesinas
18.
Nat Methods ; 11(7): 727-730, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24836920

RESUMO

High-speed, large-scale three-dimensional (3D) imaging of neuronal activity poses a major challenge in neuroscience. Here we demonstrate simultaneous functional imaging of neuronal activity at single-neuron resolution in an entire Caenorhabditis elegans and in larval zebrafish brain. Our technique captures the dynamics of spiking neurons in volumes of ∼700 µm × 700 µm × 200 µm at 20 Hz. Its simplicity makes it an attractive tool for high-speed volumetric calcium imaging.


Assuntos
Cálcio/metabolismo , Imageamento Tridimensional/métodos , Microscopia/métodos , Neurônios/fisiologia , Animais , Caenorhabditis elegans , Sinalização do Cálcio , Larva/ultraestrutura , Microscopia de Fluorescência/métodos , Peixe-Zebra
19.
Nat Methods ; 10(10): 1013-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24013820

RESUMO

Recent efforts in neuroscience research have been aimed at obtaining detailed anatomical neuronal wiring maps as well as information on how neurons in these networks engage in dynamic activities. Although the entire connectivity map of the nervous system of Caenorhabditis elegans has been known for more than 25 years, this knowledge has not been sufficient to predict all functional connections underlying behavior. To approach this goal, we developed a two-photon technique for brain-wide calcium imaging in C. elegans, using wide-field temporal focusing (WF-TeFo). Pivotal to our results was the use of a nuclear-localized, genetically encoded calcium indicator, NLS-GCaMP5K, that permits unambiguous discrimination of individual neurons within the densely packed head ganglia of C. elegans. We demonstrate near-simultaneous recording of activity of up to 70% of all head neurons. In combination with a lab-on-a-chip device for stimulus delivery, this method provides an enabling platform for establishing functional maps of neuronal networks.


Assuntos
Encéfalo/fisiologia , Caenorhabditis elegans , Imageamento Tridimensional/métodos , Vias Neurais/fisiologia , Neurônios/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação , Encéfalo/efeitos da radiação , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Sinalização do Cálcio/genética , Desenho de Equipamento , Proteínas de Fluorescência Verde/genética , Imageamento Tridimensional/instrumentação , Dispositivos Lab-On-A-Chip , Luz , Microscopia de Fluorescência , Modelos Neurológicos , Vias Neurais/efeitos da radiação , Neuroimagem , Neurônios/efeitos da radiação , Oxigênio/farmacologia , Proteínas Recombinantes de Fusão/genética , Estimulação Química
20.
Anal Chem ; 87(11): 5614-9, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25946522

RESUMO

Laser-induced acoustic desorption (LIAD) has recently been established as a tool for analytical chemistry. It is capable of launching intact, neutral, or low charged molecules into a high vacuum environment. This makes it ideally suited to mass spectrometry. LIAD can be used with fragile biomolecules and very massive compounds alike. Here, we apply LIAD time-of-flight mass spectrometry (TOF-MS) to the natural biochromophores chlorophyll, hemin, bilirubin, and biliverdin and to high mass fluoroalkyl-functionalized porphyrins. We characterize the variation in the molecular fragmentation patterns as a function of the desorption and the VUV postionization laser intensity. We find that LIAD can produce molecular beams an order of magnitude slower than matrix-assisted laser desorption (MALD), although this depends on the substrate material. Using titanium foils we observe a most probable velocity of 20 m/s for functionalized molecules with a mass m = 10,000 Da.


Assuntos
Lasers , Porfirinas/química , Acústica , Bilirrubina/química , Clorofila/química , Hemina/química , Estrutura Molecular , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA